SummaryBackgroundOne of the global targets for non-communicable diseases is to halt, by 2025, the rise in the age-standardised adult prevalence of diabetes at its 2010 levels. We aimed to estimate worldwide trends in diabetes, how likely it is for countries to achieve the global target, and how changes in prevalence, together with population growth and ageing, are affecting the number of adults with diabetes.MethodsWe pooled data from population-based studies that had collected data on diabetes through measurement of its biomarkers. We used a Bayesian hierarchical model to estimate trends in diabetes prevalence—defined as fasting plasma glucose of 7·0 mmol/L or higher, or history of diagnosis with diabetes, or use of insulin or oral hypoglycaemic drugs—in 200 countries and territories in 21 regions, by sex and from 1980 to 2014. We also calculated the posterior probability of meeting the global diabetes target if post-2000 trends continue.FindingsWe used data from 751 studies including 4 372 000 adults from 146 of the 200 countries we make estimates for. Global age-standardised diabetes prevalence increased from 4·3% (95% credible interval 2·4–7·0) in 1980 to 9·0% (7·2–11·1) in 2014 in men, and from 5·0% (2·9–7·9) to 7·9% (6·4–9·7) in women. The number of adults with diabetes in the world increased from 108 million in 1980 to 422 million in 2014 (28·5% due to the rise in prevalence, 39·7% due to population growth and ageing, and 31·8% due to interaction of these two factors). Age-standardised adult diabetes prevalence in 2014 was lowest in northwestern Europe, and highest in Polynesia and Micronesia, at nearly 25%, followed by Melanesia and the Middle East and north Africa. Between 1980 and 2014 there was little change in age-standardised diabetes prevalence in adult women in continental western Europe, although crude prevalence rose because of ageing of the population. By contrast, age-standardised adult prevalence rose by 15 percentage points in men and women in Polynesia and Micronesia. In 2014, American Samoa had the highest national prevalence of diabetes (>30% in both sexes), with age-standardised adult prevalence also higher than 25% in some other islands in Polynesia and Micronesia. If post-2000 trends continue, the probability of meeting the global target of halting the rise in the prevalence of diabetes by 2025 at the 2010 level worldwide is lower than 1% for men and is 1% for women. Only nine countries for men and 29 countries for women, mostly in western Europe, have a 50% or higher probability of meeting the global target.InterpretationSince 1980, age-standardised diabetes prevalence in adults has increased, or at best remained unchanged, in every country. Together with population growth and ageing, this rise has led to a near quadrupling of the number of adults with diabetes worldwide. The burden of diabetes, both in terms of prevalence and number of adults affected, has increased faster in low-income and middle-income countries than in high-income countries.FundingWellcome Trust.
A search forνµ →νe oscillations has been conducted at the Los Alamos Meson Physics Facility by usingνµ from µ + decay at rest. Theνe are detected via the reactionνe p → e + n, correlated with a γ from np → dγ (2.2 MeV). The use of tight cuts to identify e + events with correlated γ rays yields 22 events with e + energy between 36 and 60 MeV and only 4.6 ± 0.6 background events. A fit to the e + events between 20 and 60 MeV yields a total excess of 51.8 +18.7 −16.9 ± 8.0 events. If attributed toνµ →νe oscillations, this corresponds to an oscillation probability of (0.31 +0.11 −0.10 ± 0.05)%. 14.60. Pq, 13.15.+g We present the results from a search for neutrino oscillations using the Liquid Scintillator Neutrino Detector (LSND) apparatus described in reference [1]. The existence of neutrino oscillations would imply that neutrinos have mass and that there is mixing among the different flavors of neutrinos. Candidate events in a search for the transformationν µ →ν e from neutrino oscillations with the LSND detector have previously been reported [2] for data taken in 1993 and 1994. Data taken in 1995 have been included in this paper, and the analysis has been made more efficient.Protons are accelerated by the LAMPF linac to 800 MeV kinetic energy and pass through a series of targets, culminating with the A6 beam stop. The primary neutrino flux comes from π + produced in a 30-cm-long water target in the A6 beam stop [1]. The total charge delivered to the beam stop while the detector recorded data was 1787 C in 1993, 5904 C in 1994, and 7081 C in 1995. Most of the π + come to rest and decay through the sequence π + → µ + ν µ , followed by µ + → e + ν eνµ , supplyingν µ with a maximum energy of 52.8 MeV. The energy dependence of theν µ flux from decay at rest (DAR) is very well known, and the absolute value is known to 7% [1,3]. The open space around the target is short compared to the pion decay length, so only 3% of the π + decay in flight (DIF). A much smaller fraction (approximately 0.001%) of the muons DIF, due to the difference in lifetimes and that a π + must first DIF. The totalν µ flux averaged over the detector volume, including contributions from upstream targets and all elements of the beam stop, was 7.6 × 10 −10ν µ /cm 2 /proton. Aν e component in the beam comes from the symmetrical decay chain starting with a π − . This background is suppressed by three factors in this experiment. First, π + production is about eight times the π − production in the beam stop. Second, 95% of π − will come to rest and are absorbed before decay in the beam stop. Third, 88% of µ − from π − DIF are captured from atomic orbit, a process which does not give aν e . Thus, the relative yield, compared to the positive channel, is estimated to be ∼ (1/8) × 0.05 × 0.12 = 7.5 × 10 −4 . A detailed Monte Carlo simulation [3], gives a value of 7.8 × 10 −4 for the flux ratio ofν e toν µ .The detector is a tank filled with 167 metric tons of dilute liquid scintillator, located about 30 m from the neutrino source, and surrounded on all s...
A search forν e 's in excess of the number expected from conventional sources has been made using the Liquid Scintillator Neutrino Detector, located 30
were reduced at least by 60%, 32%, and 36%, respectively, during the Olympics. Analysis of meteorological conditions and interpretation of observations using a chemical transport model suggest that although the day-to-day variability in ozone is driven mostly by meteorology, the reduction in emissions of ozone precursors associated with the Olympic Games had a significant contribution to the observed decrease in O 3 during August 2008, accounting for 80% of the O 3 reduction for the month as a whole and 45% during the Olympics Period (8-24 August). The model predicts that emission restrictions such as those implemented during the Olympics can affect O 3 far beyond the Beijing urban area, resulting in reductions in boundary layer O 3 of 2-10 ppbv over a large region of the North China Plain and Northeastern China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.