The heterostructural film combining multiferroic CoFe2O4/Pb(Zr0.52Ti0.48)O3 bilayer with semiconductor ZnO layer was prepared. Three-state resistive switching was demonstrated by time-dependent current measurements under different stimuli combination of voltage pulse and magnetic bias. The asymmetry diodelike current-voltage, capacitance-voltage, and polarization-voltage loops, which seriously depend on magnetic bias, were observed. We revealed that three-state resistive switching was dominated by the changes in the charge carriers in the heterostructure, which were modulated by the magnetoelectric coupling between ferromagnetic and ferroelectric layers and interface polarization coupling between ferroelectric and semiconductor layers. This work provides promising candidates for developing advanced switchable devices with multifunctional memory.
The ground state structures of copper clusters with different sizes along with their aggregation have been systematic investigated using Amsterdam Density Functional (ADF) and Atomistix ToolKit (ATK) programs. On the basis of geometry optimization, some Cu clusters with more stable structures which were not reported previously have been revealed. In most cases, these Cu clusters prefer to adopt icosahedral structures which originate from the 13-atom icosahedron. It has also been demonstrated that the interaction between two Cu clusters is anisotropic, which is attributed to their charge distribution, especially the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of Cu clusters. Moreover, we have carried out the simulation of Cu clusters aggregation on the silicone oil substrate by means of Monte Carlo (MC) method, which shows good consistence with our previous experimental studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.