Algorithms using 4-pixel Feistel structure and chaotic systems have been shown to resolve security problems caused by large data capacity and high correlation among pixels for color image encryption. In this paper, a fast color image encryption algorithm based on the modified 4-pixel Feistel structure and multiple chaotic maps is proposed to improve the efficiency of this type of algorithm. Two methods are used. First, a simple round function based on a piecewise linear function and tent map are used to reduce computational cost during each iteration. Second, the 4-pixel Feistel structure reduces round number by changing twist direction securely to help the algorithm proceed efficiently. While a large number of simulation experiments prove its security performance, additional special analysis and a corresponding speed simulation show that these two methods increase the speed of the proposed algorithm (0.15s for a 256*256 color image) to twice that of an algorithm with a similar structure (0.37s for the same size image). Additionally, the method is also faster than other recently proposed algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.