A number of predictors have been suggested to detect the most influential spreaders of information in online social media across various domains such as Twitter or Facebook. In particular, degree, PageRank, k-core and other centralities have been adopted to rank the spreading capability of users in information dissemination media. So far, validation of the proposed predictors has been done by simulating the spreading dynamics rather than following real information flow in social networks. Consequently, only model-dependent contradictory results have been achieved so far for the best predictor. Here, we address this issue directly. We search for influential spreaders by following the real spreading dynamics in a wide range of networks. We find that the widely-used degree and PageRank fail in ranking users' influence. We find that the best spreaders are consistently located in the k-core across dissimilar social platforms such as Twitter, Facebook, Livejournal and scientific publishing in the American Physical Society. Furthermore, when the complete global network structure is unavailable, we find that the sum of the nearest neighbors' degree is a reliable local proxy for user's influence. Our analysis provides practical instructions for optimal design of strategies for “viral” information dissemination in relevant applications.
Background-The incidence of thyroid cancer is rising steadily because of overdiagnosis and overtreatment conferred by widespread use of sensitive imaging techniques for screening. This overall incidence growth is especially driven by increased diagnosis of indolent and welldifferentiated papillary subtype and early-stage thyroid cancer, whereas the incidence of advancedstage thyroid cancer has increased marginally. Thyroid ultrasound is frequently used to diagnose thyroid cancer. The aim of this study was to use deep convolutional neural network (DCNN) models to improve the diagnostic accuracy of thyroid cancer by analysing sonographic imaging data from clinical ultrasounds.Methods-We did a retrospective, multicohort, diagnostic study using ultrasound images sets from three hospitals in China. We developed and trained the DCNN model on the training set, 131 731 ultrasound images from 17 627 patients with thyroid cancer and 180 668 images from 25 325 controls from the thyroid imaging database at Tianjin Cancer Hospital. Clinical diagnosis of the training set was made by 16 radiologists from Tianjin Cancer Hospital. Images from anatomical sites that were judged as not having cancer were excluded from the training set and only individuals with suspected thyroid cancer underwent pathological examination to confirm diagnosis. The model's diagnostic performance was validated in an internal validation set from Tianjin Cancer Hospital (8606 images from 1118 patients) and two external datasets in China (the
Ensemble learning strategies, especially Boosting and Bagging decision trees, have demonstrated impressive capacities to improve the prediction accuracy of base learning algorithms. Further gains have been demonstrated by strategies that combine simple ensemble formation approaches. In this paper, we investigate the hypothesis that the improvement in accuracy of multi-strategy approaches to ensemble learning is due to an increase in the diversity of ensemble members that are formed. In addition, guided by this hypothesis, we develop three new multi-strategy ensemble learning techniques. Experimental results in a wide variety of natural domains suggest that these multi-strategy ensemble learning techniques are, on average, more accurate than their component ensemble learning techniques.
Human awareness plays an important role in the spread of infectious diseases and the control of propagation patterns. The dynamic process with human awareness is called awareness cascade, during which individuals exhibit herd-like behavior because they are making decisions based on the actions of other individuals [Borge-Holthoefer et al., J. Complex Networks 1, 3 (2013)]. In this paper, to investigate the epidemic spreading with awareness cascade, we propose a local awareness controlled contagion spreading model on multiplex networks. By theoretical analysis using a microscopic Markov chain approach and numerical simulations, we find the emergence of an abrupt transition of epidemic threshold β(c) with the local awareness ratio α approximating 0.5, which induces two-stage effects on epidemic threshold and the final epidemic size. These findings indicate that the increase of α can accelerate the outbreak of epidemics. Furthermore, a simple 1D lattice model is investigated to illustrate the two-stage-like sharp transition at α(c)≈0.5. The results can give us a better understanding of why some epidemics cannot break out in reality and also provide a potential access to suppressing and controlling the awareness cascading systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.