Purpose To report on the safety and efficacy of the 256-channel Intelligent Micro Implant Eye epiretinal prosthesis system (IMIE 256). Methods The IMIE 256 implants were implanted in the right eyes of five subjects with end-stage retinitis pigmentosa. Following implantation, the subjects underwent visual rehabilitation training for 90 days, and their visual performance was evaluated using the grating visual acuity test, Tumbling E visual acuity test, direction of motion, square localization, and orientation and mobility test. To evaluate the safety of the IMIE 256, all adverse events were recorded. Results Subjects performed significantly better on all evaluations with the IMIE 256 system on as compared with the performance at baseline or with the system off. There was a steady improvement in performance at each observation interval, indicating that the training and/or practice helped the subjects use the IMIE 256. There were two serious adverse events—electrode array movement and low intraocular pressure in one subject, which resolved with surgery. There were no other adverse events observed except those expected in the course of postoperative healing. Conclusions These results show an improved safety and efficacy profile compared with that of the Argus II implant. Further clinical trials are needed to confirm these results in a larger number of subjects and over longer durations. Translational Relevance To our knowledge, this study reports the first in-human data from a high-density (256 electrodes) epiretinal implant to restore sight to a subset of blind patients.
This paper aims to discuss the possibility of lncRNA PVT1 as a diagnostic biomarker for diabetic retinopathy (DR) and explore the underlying mechanism. Real-time quantitative polymerase chain reaction (RT-qPCR) was selected to determine the expression level of lncRNA PVT1 in the serum of all subjects. The receiver operating characteristic (ROC) curve reflected the diagnostic significance of PVT1 for DR patients. The Cell Counting Kit-8 (CCK-8) and Transwell assays were used to evaluate the effect of PVT1 expression on the proliferation and migration of human retinal microvascular endothelial cells (HRMECs). The luciferase reporter gene was selected to verify the interaction between PVT1 and miR-128-3p. The relative expression level of PVT1 in serum was higher in both the DB and DR group than in the healthy controls group (HC), and it was highest in the DR group. ROC curve indicated that serum PVT1 could distinguish between HC and DB patients, DB patients and DR patients, respectively. In vitro, high glucose induction significantly increased the proliferation and migration capabilities of HRMECs, but silencing PVT1 (si-PVT1) downregulated the proliferation and migration capabilities of HRMECs. The detection of luciferase reporter gene showed that lncRNA PVT1 targeted miR-128-3p, and there was a negative correlation in the serum of DR patients. In conclusion, this study confirmed that lncRNA PVT1 might regulate the process of DR by targeting miR-128-3p, and has the potential as a biomarker for the diagnosis of DR.
Diabetic retinopathy is one of the common microvascular complications of diabetes, and it is the main cause of vision loss among working-age people. This study interpreted the roles of miR-99a-5p in DR patients and human retinal microvascular endothelial cell (hRMECs) injury induced by high glucose. The expression of miR-99a-5p was detected in patients with NDR, NPDR, and PDR. The indictive impacts of miR-99a-5p were tested by the ROC curve, and the link between miR-99a-5p and clinical information was verified by the Pearson test. HG was used to instruct cell models. The CCK-8 and transwell methods were performed to detect the proliferative and migrated cells. The targeted relationship was explained by luciferase activity. The content of miR-99a-5p was gradually lessened in NPDR and PDR patients. MiR-99a-5p might differentiate DR patients from NDR patients and PDR patients from NPDR patients. The interconnection between miR-99a-5p and clinical factors was endorsed in all DR patients. Overexpression of miR-99a-5p assuaged the abnormality of cell migration and proliferation of hRMECs triggered by HG. NOX4 was a downstream signaling component of miR-99a-5p. In conclusion, MiR-99a-5p protected hRMECs against HG damage, and the miR-99a-5p might be a novel target for diagnosis of DR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.