The nucleation and growth of Li metal during deposition and the associated dendrite penetration are the critical and fundamental issues influencing the safety and power density of solid‐state lithium metal batteries (SSLBs). However, investigations on Li metal deposition/dissolution especially the formation and growth of Li dendrites and their determining factors in the all‐solid‐state electrochemical systems are still lacking. In this work, in situ observations of the Li metal growth process, and defects induced heterogeneous deposition under cathodic load, are reported. By exploiting in situ scanning electron microscopy, along with electrochemical analytical approaches, the spatial distribution and morphological evolution of the deposited Li at the electrode|solid electrolyte interface are obtained and discussed. This investigation reveals that the formation of lithium whiskers is decided by the local Li ion flux and the deposition active sites, which are closely dependent on the content and types of defects in the polycrystalline electrolyte. Moreover, the defect regions exhibit faster Li deposition kinetics and higher nucleation tendency. These results can advance the fundamental understanding of the Li penetration mechanism in SSLBs.
Solid electrolytes hold the promise for enabling high-performance lithium (Li) metal batteries, but suffer from Li-filament penetration issues. The mechanism of this rate-dependent failure, especially the impact of the electrochemo-mechanical attack from Li deposition, remains elusive. Herein, we reveal the Li deposition dynamics and associated failure mechanism of solid electrolyte by visualizing the Li|Li7La3Zr2O12 (LLZO) interface evolution via in situ transmission electron microscopy (TEM). Under a strong mechanical constraint and low charging rate, the Li-deposition-induced stress enables the single-crystal Li to laterally expand on LLZO. However, upon Li “eruption”, the rapidly built-up local stress, reaching at least GPa level, can even crack single-crystal LLZO particles without apparent defects. In comparison, Li vertical growth by weakening the mechanical constraint can boost the local current density up to A·cm−2 level without damaging LLZO. Our results demonstrate that the crack initiation at the Li|LLZO interface depends strongly on not only the local current density but also the way and efficiency of mass/stress release. Finally, potential strategies enabling fast Li transport and stress relaxation at the interface are proposed for promoting the rate capability of solid electrolytes.
Constructing 3D skeletons modified with lithiophilic seeds has proven effective in achieving dendrite-free lithium metal anodes. However, these lithiophilic seeds are mostly alloy-or conversion-type materials, and they tend to aggregate and redistribute during cycling, resulting in the failure of regulating Li deposition. Herein, we address this crucial but long-neglected issue by using intercalation-type lithiophilic seeds, which enable antiaggregation owing to their negligible volume expansion and high electrochemical stability against Li. To exemplify this, a 3D carbon-based host is built, in which ultrafine TiO 2 seeds are uniformly embedded in nitrogendoped hollow porous carbon spheres (N-HPCSs). The TiO 2 @N-HPCSs electrode exhibits superior Coulombic efficiency, high-rate capability, and long-term stability when evaluated as compertitive anodes for Li metal batteries. Furthermore, the superiority of intercalation-type seeds is comprehensively revealed through controlled experiments by various in situ/ex situ electron and optical microscopies, which highlights the excellent structural stability and lithiophilicity of TiO 2 nanoseeds upon repeated cycling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.