The aim of this study is to accurately forecast the changes in water level of a reservoir located in Malaysia with two different scenarios; Scenario 1 (SC1) includes rainfall and water level as input and Scenario 2 (SC2) includes rainfall, water level, and sent out. Different time horizons (one day ahead to seven days) will be investigated to check the accuracy of the proposed models. In this study, four supervised machine learning algorithms for both scenarios were proposed such as Boosted Decision Tree Regression (BDTR), Decision Forest Regression (DFR), Bayesian Linear Regression (BLR) and Neural Network Regression (NNR). Eighty percent of the total data were used for training the datasets while 20% for the dataset used for testing. The models’ performance is evaluated using five statistical indexes; the Correlation Coefficient (R2), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Relative Absolute Error (RAE), and Relative Squared Error (RSE). The findings showed that among the four proposed models, the BLR model outperformed other models with R2 0.998952 (1-day ahead) for SC1 and BDTR for SC2 with R2 0.99992 (1-day ahead). With regards to the uncertainty analysis, 95PPU and d-factors were adopted to measure the uncertainties of the best models (BLR and BDTR). The results showed the value of 95PPU for both models in both scenarios (SC1 and SC2) fall into the range between 80% to 100%. As for the d-factor, all values in SC1 and SC2 fall below one.
Solar energy serves as a great alternative to fossil fuels as they are clean and renewable energy. Accurate solar radiation (SR) prediction can substantially lower down the impact cost pertaining to the development of solar energy. Lately, many SR forecasting system has been developed such as support vector machine, autoregressive moving average and artificial neural network (ANN). This paper presents a comprehensive study on the meteorological data and types of backpropagation (BP) algorithms used to train and develop the best SR predicting ANN model. The meteorological data, which includes temperature, relative humidity and wind speed are collected from a meteorological station from Kuala Terrenganu, Malaysia. Three different BP algorithms are employed into training the model i.e., Levenberg–Marquardt, Scaled Conjugate Gradient and Bayesian Regularization (BR). This paper presents a comparison study to select the best combination of meteorological data and BP algorithm which can develop the ANN model with the best predictive ability. The findings from this study shows that temperature and relative humidity both have high correlation with SR whereas wind temperature has little influence over SR. The results also showed that BR algorithm trained ANN models with maximum R of 0.8113 and minimum RMSE of 0.2581, outperform other algorithm trained models, as indicated by the performance score of the respective models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.