The aim of this study is to accurately forecast the changes in water level of a reservoir located in Malaysia with two different scenarios; Scenario 1 (SC1) includes rainfall and water level as input and Scenario 2 (SC2) includes rainfall, water level, and sent out. Different time horizons (one day ahead to seven days) will be investigated to check the accuracy of the proposed models. In this study, four supervised machine learning algorithms for both scenarios were proposed such as Boosted Decision Tree Regression (BDTR), Decision Forest Regression (DFR), Bayesian Linear Regression (BLR) and Neural Network Regression (NNR). Eighty percent of the total data were used for training the datasets while 20% for the dataset used for testing. The models’ performance is evaluated using five statistical indexes; the Correlation Coefficient (R2), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Relative Absolute Error (RAE), and Relative Squared Error (RSE). The findings showed that among the four proposed models, the BLR model outperformed other models with R2 0.998952 (1-day ahead) for SC1 and BDTR for SC2 with R2 0.99992 (1-day ahead). With regards to the uncertainty analysis, 95PPU and d-factors were adopted to measure the uncertainties of the best models (BLR and BDTR). The results showed the value of 95PPU for both models in both scenarios (SC1 and SC2) fall into the range between 80% to 100%. As for the d-factor, all values in SC1 and SC2 fall below one.
Sediment is a universal issue that is generated in the river catchment and affects the river flow, reservoir capacity, hydropower generation and dam structure. This paper aims to present the result of experimentation in sediment load estimation using various machine learning algorithms as a powerful AI approach. The data was collected from eight locations in upstream area of Ringlet reservoir catchment. The input variables are discharge and suspended solid. It was found that there is strong correlation between sediment and suspended solid with correlation coefficient of R = 0.9. The developed ML model successfully estimated the sediment load with competitive results from ANN, Decision Tree, AdaBoost and SVM. The best result was produced by SVM (v-SVM version) where very low RMSE was generated for both training and testing dataset despite its more complicated hyperparameters setup. The results also show a promising application of machine learning for future prediction in hydro-informatic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.