Although positive associations exist between ambient particulate matter (PM 2.5 ; diameter ≤ 2.5 μm) and the morbidity and mortality rates for respiratory diseases, the biological mechanisms of the reported health effects are unclear. Considering that alveolar macrophages (AM) are the main cells responsible for phagocytic clearance of xenobiotic particles that reach the airspaces of the lungs, the purpose of this study was to investigate whether PM 2.5 induced AM apoptosis, and investigate its possible mechanisms. Freshly isolated AM from Wistar rats were treated with extracted PM 2.5 at concentrations of 33, 100, or 300 μg/mL for 4 h; thereafter, the cytotoxic effects were evaluated. The results demonstrated that PM 2.5 induced cytotoxicity by decreasing cell viability and increasing lactate dehydrogenase (LDH) levels in AMs. The levels of reactive oxygen species (ROS) and intracellular calcium cations (Ca 2+) markedly increased in higher PM 2.5 concentration groups. Additionally, the apoptotic ratio increased, and the apoptosis-related proteins BCL2-associated X (Bax), caspase-3, and caspase-9 were upregulated, whereas B cell lymphoma-2 (Bcl-2) protein levels were downregulated following PM 2.5 exposure. Cumulative findings showed that PM 2.5 induced apoptosis in AMs through a mitochondrial-mediated pathway, which indicated that PM 2.5 plays a significant role in lung injury diseases.
G protein-coupled receptors (GPCRs) are the most common and important drug targets. However, >70% of GPCRs are undruggable or difficult to target using conventional chemical agonists/antagonists. Small nucleic acid molecules, which can sequence-specifically modulate any gene, offer a unique opportunity to effectively expand drug targets, especially those that are undruggable or difficult to address, such as GPCRs. Here, the authors report for the first time that small activating RNAs (saRNAs) effectively modulate a GPCR for cancer treatment. Specifically, saRNAs promoting the expression of Mas receptor (MAS1), a GPCR that counteracts the classical angiotensin II pathway in cancer cell proliferation and migration, are identified. These saRNAs, delivered by an amphiphilic dendrimer vector, enhance MAS1 expression, counteracting the angiotensin II/angiotensin II Receptor Type 1 axis, and leading to significant suppression of tumorigenesis and the inhibition of tumor progression of multiple cancers in tumor-xenografted mouse models and patient-derived tumor models. This study provides not only a new strategy for cancer therapy by targeting the renin-angiotensin system, but also a new avenue to modulate GPCR signaling by RNA activation.
The effects of particulate matter (PM) on cardiopulmonary health have been studied extensively over the past three decades. Particulate matter is the primary criteria air pollutant most commonly associated with adverse health effects on the cardiovascular and respiratory systems. The mechanisms by which PM exerts its effects are thought to be due to a variety of factors which may include, but are not limited to, concentration, duration of exposure, and age of exposed persons. Adverse effects of PM are strongly driven by their physicochemical properties, sites of deposition, and interactions with cells of the respiratory and cardiovascular systems. The direct translocation of particles, as well as neural and local inflammatory events, are primary drivers for the observed cardiopulmonary health effects. In this review, toxicological studies in animals, and clinical and epidemiological studies in humans are examined to demonstrate the importance of using all three approaches to better define potential mechanisms driving health outcomes upon exposure to airborne PM of diverse physicochemical compositions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.