Surface plasmon-enhanced electrochemiluminescence (SPEECL) with excellent sensitivity and simplicity has attracted increasing attention. In this work, we reported a novel SPEECL with DNA templated silver nanoclusters (DNA-AgNCs) as ECL emitters and gold nanoparticles (AuNPs) as localized surface plasmon resonance (LSPR) source. The SPEECL with DNA-AgNCs as ECL luminophores possessed low toxicity and avoided the labeling process, which is favorable for its further sensing application. In addition, by investigation of the SPEECL under different distances between DNA-AgNCs and AuNPs, it was demonstrated that the SPEECL was distance dependent. Meanwhile, the SPEECL intensity changed with the sizes and interdistance of AuNPs under different electrodeposition time. Furthermore, by the combination of a cyclic amplification process with enzyme-free catalytic hairpin DNA, a sensitive SPEECL biosensor was proposed for the detection of microRNA (miRNA-21) successfully with a wide linear range from 1 aM to 10 4 fM and a relatively low detection limit of 0.96 aM, which was applied in the detection of miRNA-21 in real samples with satisfying results. This novel, simple, sensitive, and selective SPEECL with label-free and low-toxic ECL emitters displayed a great potential for bioassay application.
G protein-coupled receptors (GPCRs) are the most common and important drug targets. However, >70% of GPCRs are undruggable or difficult to target using conventional chemical agonists/antagonists. Small nucleic acid molecules, which can sequence-specifically modulate any gene, offer a unique opportunity to effectively expand drug targets, especially those that are undruggable or difficult to address, such as GPCRs. Here, the authors report for the first time that small activating RNAs (saRNAs) effectively modulate a GPCR for cancer treatment. Specifically, saRNAs promoting the expression of Mas receptor (MAS1), a GPCR that counteracts the classical angiotensin II pathway in cancer cell proliferation and migration, are identified. These saRNAs, delivered by an amphiphilic dendrimer vector, enhance MAS1 expression, counteracting the angiotensin II/angiotensin II Receptor Type 1 axis, and leading to significant suppression of tumorigenesis and the inhibition of tumor progression of multiple cancers in tumor-xenografted mouse models and patient-derived tumor models. This study provides not only a new strategy for cancer therapy by targeting the renin-angiotensin system, but also a new avenue to modulate GPCR signaling by RNA activation.
Here we report the development of a simple label-free electrochemical method for a PNK assay based on the mimic peroxidase character of a prepared TiO2 nanotube array (NTA) and its specific attachment to phosphorylated DNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.