XANES (X-ray Absorption Near Edge Spectroscopy) has been employed to evaluate the efficacy of a process designed to encapsulate and reduce TcO4-in cement matrices, thereby immobilizing Tc. The oxidation state of Se following bioremediation of Se by bacteria has also been determined by XANES. The XANES measurements were performed at the Stanford Synchrotron Radiation Laboratory (SSRL) and the National Synchrotron Light Source (NSLS) at the respective K edges of Tc (21.0 keV) and Se (12.7 keV). Comparison of the XANES spectra of Tc in untreated cement to Tc in slag treated cement and to the chemical shifts of reference materials, shows that the oxidation state of Tc is the same in both cements. Thus, the addition of a reducing agent to the cement formulation does not significantly reduce the TcO4-. The common soil bacterium,Bacillus subtilis, is known to incorporate Se on or within the cell wall when exposed to a Se(IV) solution. The Se XANES spectra ofB. subtilis, as well as bacillus isolated from selenium rich soil, show that the organisms reduce selenite to the red allotrope of elemental Se.
Side chain engineering of fused bithiophene imide oligomers yields a new series of random copolymers with tunable polymer chain packing and film morphology. When applied in all-polymer solar cells, an 8.32% efficiency is obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.