A new strategy of platinum(II) complexation is developed to regulate the crystallinity and molecular packing of polynitrogen heterocyclic polymers, optimize the morphology of the active blends, and improve the efficiency of the resulting nonfullerene polymer solar cells (NF‐PSCs). The newly designed s‐tetrazine (s‐TZ)‐containing copolymer of PSFTZ (4,8‐bis(5‐((2‐butyloctyl)thio)‐4‐fluorothiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene‐alt‐3,6‐bis(4‐octylthiophen‐2‐yl)‐1,2,4,5‐tetrazine) has a strong aggregation property, which results in serious phase separation and large domains when blending with Y6 ((2,2′‐((2Z,2′Z)‐((12,13‐bis(2‐ethylhexyl)‐3,9‐diundecyl‐12,13‐dihydro‐[1,2,5]thiadiazolo[3,4‐e]thieno[2″,3″:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2‐g]thieno[2′,3′:4,5]thieno[3,2‐b]indole‐2,10‐diyl)bis(methanylylidene))bis(5,6‐difluoro‐3‐oxo‐2,3‐dihydro‐1H‐indene‐2,1‐diylidene))dimalononitrile)), and produces a power‐conversion efficiency (PCE) of 13.03%. By adding small amount of Pt(Ph)2(DMSO)2 (Ph, phenyl and DMSO, dimethyl sulfoxide), platinum(II) complexation would occur between Pt(Ph)2(DMSO)2 and PSFTZ. The bulky benzene ring on the platinum(II) complex increases the steric hindrance along the polymer main chain, inhibits the polymer aggregation strength, regulates the phase separation, optimizes the morphology, and thus improves the efficiency to 16.35% in the resulting devices. 16.35% is the highest efficiency for single‐junction PSCs reported so far.
Both fluorine and ester substituted monothiophene yielded a novel thiophene derivative FE-T. The resulting polymer donor S1 enabled single-junction non-fullerene solar cell with over 16% efficiency.
We demonstrated the synthesis and characterization of two conjugated copolymers, PBDTFBZO and PBDTFBZS, consisting of dialkylthiol substituted benzo[1,2-b:4,5-b']dithiophene donor and monofluorinated benzotriazole acceptor blocks. The resulting copolymers show large band gaps, deep HOMO and LUMO energy levels. Improved V(oc), J(sc), and FF were obtained at the same time to increase overall efficiencies of their single and tandem polymer solar cells. The enhanced V(oc) can be ascribed to a low-lying HOMO energy level by incorporating dialkylthiol and fluorine substituents on the polymer backbone. The improvement in J(sc) and FF are likely due to high carrier mobility, suppressed charge recombination, and fine nanostructure morphology. A 7.74% PCE was achieved from the regular single device based on PBDTFBZS:PC71BM blend film with 3% 1,8-diiodooctane (DIO) additive. In combination with low band gap diketopyrrolopyrrole (DPP)-based copolymer, tandem devices based on PBDTFBZS exhibited high PCE up to 9.40%. The results indicate that PBDTFBZO and PBDTFBZS are promising polymer donor materials for future application of large-area polymer solar cells.
Chemical doping is a key process for investigating charge transport in organic semiconductors and improving certain (opto)electronic devices 1-9 . N-(electron)doping is fundamentally more challenging than p-(hole)doping and typically achieves very low doping efficiency (η) <10% 1,10 . An efficient molecular n-dopant should simultaneously exhibit a high reducing power and air stability for broad applicability 1,5,6,9,11 , which is very challenging. Here we show a general concept of catalysed n-doping of organic semiconductors using air-stable precursor-type molecular dopants. Incorporation of a transition metal as vapor-deposited nanoparticles (e.g. Pt, Au, Pd) or solution-processable 2 organometallic complexes (e.g. Pd 2 (dba) 3 ) catalyses the reaction, as assessed by experimental and theoretical evidence, enabling drastically increased η in a much shorter doping time and high electrical conductivities >100 S cm −1 12 . This methodology has technological implications for realizing improved semiconductor devices and offers a broad exploration space of ternary systems comprising catalysts, molecular dopants, and semiconductors, thus opening new opportunities in n-doping research and applications.N-doping of organic semiconductors is important for developing light-emitting diodes 1,6-9 , solar cells 7,8 , thin-film transistors 10 , and thermoelectric devices 12,13 . Although solution-based ndoping is widely investigated, only few air-stable n-dopants have been developed (Fig. S1), with the most prominent being organic hydrides 5,9,14-18 such as benzoimidazole derivatives, dimers of organic radicals 11,19,20 such as nineteen-electron organometallic sandwich compounds, and mono-/multi-valent anions 8,21,22 such as OH − , F − and Ox 2− . These air-stable dopants have a deep ionization potential (IP) in their initial forms, thus, cannot directly transfer electrons to n-dope organic semiconductors with a low electron affinity (EA). For anions, it was shown that dispersion into small anhydrous clusters enables sufficiently high donor levels for n-doping organic semiconductors with EAs up to 2.4 eV 8 . Hydride and dimer dopant precursors (or referred as precursor-type dopants) most undergo a C-H and C-C bond cleavage reaction, respectively, to generate active-doping-species in situ before electron transfer can occur [23][24][25][26] . Thus, their reducing strength and reaction kinetics are strongly affected by the thermodynamics and the activation energies of the doping reaction [23][24][25][26] . If the activation energy to the product is reduced, it is expected that the reaction rate, and extent of doping, will greatly increase (Fig. 1a). 3Transition metal (TM) catalysed C-H and C-C bond cleavage reactions are widely used in organic synthesis, with the most common TMs belonging to group 8-11 elements and the catalysts in the form of nanoparticles (NPs) and organometallic complexes 27,28 . Nanoparticle size, supporting material, and chemical structure of the complex can greatly affect catalytic activities. Thus, an i...
Naphtho[1,2-c:5,6-c']bis[1,2,5]thiadiazole-based small molecules have been synthesized for organic solar cells. The optimized devices processed by a halogen-free solvent of CS2 exhibited a PCE of 11.53% with a small energy loss of 0.57 eV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.