Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Tantalum and its alloys are regarded as equipment construction materials for processing aggressive acidic media due to their excellent properties. In this study, the influence of severe rolling (90%) on the dissolution rate of a cold-rolled Ta-4%W sheet in different directions was investigated during immersion testing and the corresponding mechanism was discussed. The results show that the dissolution rate of the cold-rolled sample is significantly lower than that of the undeformed sample. The corrosion resistance followed the sequence of “initial” < “90%-ND” < “90%-RD” < “90%-TD”, while the strength is in positive correlation with the corrosion resistance. Severe rolling promotes grain subdivision accompanied by long geometrically necessary boundaries and short incidental dislocation boundaries on two scales in the cold-rolled sample. The volume elements enclosed by geometrically necessary boundaries form preferential crystallographic orientations. Such preferential crystallographic orientations can greatly weaken the electrochemical process caused by adjacent volume elements, resulting in greatly reduced corrosion rates in the severely deformed sample. The unexpected finding provides a new idea for tailoring the structures of tantalum alloys to improve both their strength and corrosion resistance.
In this work, we present an atomic-scale investigation of L10-FePt particles that are partly or fully embedded in a single-crystalline MgO matrix. Hundreds of particles in different orientations, of different sizes, and with different side contact facets are statistically and quantitatively analyzed. It is found that the presence of side contact facets does not introduce any misorientation in particles with the c axis out-of-plane (OP), even in those of small sizes. In addition, a markedly higher proportion of in-plane (IP) variants is found in smaller particles of sizes less than 10 nm, and most IP variants and the IP part in multi-variants have a large area of side contact facets or are even fully embedded. Those results can be explained by the fact that the transformation strain and interface strain jointly affect the particle orientation, and the competition between total strain energy in the film plane and in lateral planes plays a key role in determining particle orientation. Thus, a suggestion on the L10-FePt nanoparticle film production can be proposed that a moderate area of side contact facets may help keep a perfect OP orientation in the OP particles without increasing the proportion of IP variants. Additionally, our work can provide reference information on the variant orientation preference during a post-annealing process in nanoparticle films on a rough substrate or embedded in a matrix as well as in core–shell material systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.