Visual word recognition has been proposed to have a functional and spatial organization corresponding to hierarchical language-like word forms in the left fusiform gyrus (FG) during visual word recognition in alphabetic languages. However, it is still unclear whether the similar functional gradients of word-like representation exist during Chinese character recognition. In this study, we adopted univariate activation analysis and representational similarity analysis (RSA) methods to investigate the functional organization in the FG for Chinese character recognition using task fMRI data. Native Chinese readers were visually presented with four types of character-like stimuli (i.e., real characters, pseudo-characters, false characters, and stroke combinations). After analysis, we observed a posterior-to-anterior functional gradient in the left FG corresponding to the degree of likeness of stimuli to character. Additionally, distinct subregions of the left FG harbor different orthographic codes. The middle part of the left FG was involved in abstract orthographic processing, while the anterior part of the left FG was involved in lexical orthographic processing (i.e., mapping orthography onto phonology or semantics). Notably, for the right FG, we did not find similar coding pattern for selectivity to character likeness, indicating the asymmetry of the functional hierarchical organization in favor of the left hemisphere. In conclusion, our findings revealed that the left FG presents a posterior-to-anterior gradient functional processing for Chinese character recognition, which expands our understanding of the psychological, neural, and computational theories of word reading.
How bilingual brains accomplish the processing of more than one language has been widely investigated by neuroimaging studies. The assimilation-accommodation hypothesis holds that both the same brain neural networks supporting the native language and additional new neural networks are utilized to implement second language processing. However, whether and how this hypothesis applies at the finer-grained levels of both brain anatomical organization and linguistic functions remains unknown. To address this issue, we scanned Chinese-English bilinguals during an implicit reading task involving Chinese words, English words and Chinese pinyin. We observed broad brain cortical regions wherein interdigitated distributed neural populations supported the same cognitive components of different languages. Although spatially separate, regions including the opercular and triangular parts of the inferior frontal gyrus, temporal pole, superior and middle temporal gyrus, precentral gyrus and supplementary motor areas were found to perform the same linguistic functions across languages, indicating regional-level functional assimilation supported by voxel-wise anatomical accommodation. Taken together, the findings not only verify the functional independence of neural representations of different languages, but show co-representation organization of both languages in most language regions, revealing linguistic-feature specific accommodation and assimilation between first and second languages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.