The aim of the present study was to investigate the role of complement activation in the pathogenesis of neuropathic pain (NPP) induced by peripheral nerve injury. We modified a classical chronic constriction injury (CCI) model (mCCI), and verified its reliability in rats. Furthermore, reverse transcription-PCR and immunohistochemistry were conducted to investigate complement activation in the spinal dorsal horn and the effect of a complement inhibitor, cobra venom factor (CVF), on the behavior of the mCCI model rats. We found that rats in the mCCI group presented a better general condition, without signs of autophagy of the toes. Moreover, mCCI induced a significant increase (+40%) in the expression of component 3 (C3) mRNA in the spinal dorsal horn, which was associated with hyperalgesia. Correlation analysis showed a negative correlation between the mechanical pain threshold and the expression of C3 in the spinal cord. Administration of CVF reduced the occurrence of hyperalgesia in mCCI rats and nearly reversed the hyperalgesia. In addition, the mCCI rats exhibited significantly less spinal superoxide dismutase activity and significantly greater levels of maleic dialdehyde compared to the sham-operated rats. Transmission electron micrographs revealed mitochondrial swelling, cell membrane damage, and cristae fragmentation in the neurons of the spinal dorsal horn 14 days after mCCI. Mitochondrial swelling was attenuated in mCCI rats receiving CVF. The findings demonstrated that abnormal complement activation occurred in the dorsal horn of the spinal cord in rats with NPP, and C3 in the spinal dorsal horn could play an important role in the cascade reaction of complements that are involved in the development of hyperalgesia.
Glioma is a common type of tumor in human central nervous system, and it is characterized with high mobility and mortality. The prognosis of patients with advanced glioma remains poor. Thus, it is necessary to develop novel therapeutic approaches for the treatment of this disease. Circular RNAs are a group of noncoding RNAs which have been detected in eukaryotic cells. They are tissue-specific and characterized with a more stable structure compared with linear RNAs. Recently, studies have revealed that certain circular RNAs are involved in biological processes such as gene regulation; however, the functions of most circular RNAs remain unknown and require further investigation. Furthermore, circular RNAs can act as “sponges” of its target microRNA, consequently suppressing their activity. Additionally, impaired expression of circular RNAs is reported in different diseases including cancer. In our study, low expression of circular RNA Scm like with 4 Mbt domains 2 was detected in glioma samples. Furthermore, reduced circRNA Scm like with 4 Mbt domains 2 expression was observed in human glioma cell lines compared to normal astrocyte cells. Additionally, overexpression of circRNA Scm like with 4 Mbt domains 2 suppressed the growth and metastasis of glioma cells in vitro. Moreover, microRNA-182-5p could be a downstream molecule of circRNA Scm like with 4 Mbt domains 2. The influenced of microRNA-182-5p-induced proliferation, migration, and invasion of glioma cells could be abrogated by overexpressed circRNA Scm like with 4 Mbt domains 2. In addition, metastasis suppressor 1 was predicted as a novel target of microRNA-182-5p, and its expression was restored by circRNA Scm like with 4 Mbt domains 2. In summary, our findings provided novel insight into the roles of circRNA Scm like with 4 Mbt domains 2 in glioma. More importantly, circRNA Scm like with 4 Mbt domains 2/microRNA-182-5p/metastasis suppressor 1 axis could be a putative therapeutic target for the treatment of patients with glioma.
Cancer stem cells (CSCs) are considered to be tumor-initiating cells, responsible for tumor invasive growth and dissemination to distant organ sites. Typically, radiation treatment and chemotherapy should target CSCs. However, current research investigating CSCs is impeded by the difficulty of isolating pure CSCs and maintaining them in vitro. In the present study, the synergistic inhibition of glycogen synthase kinase 3 and mitogen-activated protein kinase kinase using small molecules, CHIR99021 and PD184352, efficiently generated CSCs from immortalized human mammary epithelial cells (HMLEs) and resulted in the acquisition of mesenchymal traits and the expression of epithelial-mesenchymal transition markers. The cell proliferation, invasion and migration of HMLE cells were significantly promoted by CHIR99021 and PD184352 (P<0.05). Furthermore, the cell cycle was shifted from the G0/G1 phase to the G2/M phase, and the apoptotic rate was suppressed in HMLE cells following treatment with CHIR99021 and PD184352. Compared with control group, the stimulated cells exhibited an increased ability to form mammospheres and regenerate a tumor. In addition to these properties, the induced cells also exhibited notable chemotherapy resistance. In vivo, the treatment of cells with CHIR99021 and PD184352 promoted the growth of HMLE-engrafted tumor types. These results provide a practical strategy for the generation of CSCs using small molecules in vitro, which provides a cell resource that may be used for drug screening. Additionally, the present results additionally highlighted the synergistic functions of Wnt and mitogen-activated protein kinase kinase signaling pathways in tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.