In this study, an electrochemical impedance biosensor was developed as a simple and fast method for real-time monitoring of biofilm binding properties via continuous impedance spectroscopy. To prepare the sensing membrane, cells were immobilized onto gold electrodes with nitrocellulose membranes. Different cell growth features were measured with the impedance instrument and analyzed using an equivalent model for data fitting and support vector regression (SVR) for data processing. The collected impedance spectra revealed that the binding attachment areas of cells differ depending on the cell density. Our results demonstrate the usefulness and feasibility of training our impedance-based sensor with a small amount of data to predict the effective area of different biofilms (GE, NGE, and CNGE), with a prediction error of 9.8%.
Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.