Prediction of DNA-binding proteins (DBPs) has become a popular research topic in protein science due to its crucial role in all aspects of biological activities. Even though considerable efforts have been devoted to developing powerful computational methods to solve this problem, it is still a challenging task in the field of bioinformatics. A hidden Markov model (HMM) profile has been proved to provide important clues for improving the prediction performance of DBPs. In this paper, we propose a method, called HMMPred, which extracts the features of amino acid composition and auto-and cross-covariance transformation from the HMM profiles, to help train a machine learning model for identification of DBPs. Then, a feature selection technique is performed based on the extreme gradient boosting (XGBoost) algorithm. Finally, the selected optimal features are fed into a support vector machine (SVM) classifier to predict DBPs. The experimental results tested on two benchmark datasets show that the proposed method is superior to most of the existing methods and could serve as an alternative tool to identify DBPs.
DNA-binding proteins (DBPs) play vital roles in all aspects of genetic activities. However, the identification of DBPs by using wet-lab experimental approaches is often time-consuming and laborious. In this study, we develop a novel computational method, called PredDBP-Stack, to predict DBPs solely based on protein sequences. First, amino acid composition (AAC) and transition probability composition (TPC) extracted from the hidden markov model (HMM) profile are adopted to represent a protein. Next, we establish a stacked ensemble model to identify DBPs, which involves two stages of learning. In the first stage, the four base classifiers are trained with the features of HMM-based compositions. In the second stage, the prediction probabilities of these base classifiers are used as inputs to the meta-classifier to perform the final prediction of DBPs. Based on the PDB1075 benchmark dataset, we conduct a jackknife cross validation with the proposed PredDBP-Stack predictor and obtain a balanced sensitivity and specificity of 92.47% and 92.36%, respectively. This outcome outperforms most of the existing classifiers. Furthermore, our method also achieves superior performance and model robustness on the PDB186 independent dataset. This demonstrates that the PredDBP-Stack is an effective classifier for accurately identifying DBPs based on protein sequence information alone.
To reveal the working pattern of programmed cell death, knowledge of the subcellular location of apoptosis proteins is essential. Besides the costly and time-consuming method of experimental determination, research into computational locating schemes, focusing mainly on the innovation of representation techniques on protein sequences and the selection of classification algorithms, has become popular in recent decades. In this study, a novel tri-gram encoding model is proposed, which is based on using the protein overlapping property matrix (POPM) for predicting apoptosis protein subcellular location. Next, a 1000-dimensional feature vector is built to represent a protein. Finally, with the help of support vector machine-recursive feature elimination (SVM-RFE), we select the optimal features and put them into a support vector machine (SVM) classifier for predictions. The results of jackknife tests on two benchmark datasets demonstrate that our proposed method can achieve satisfactory prediction performance level with less computing capacity required and could work as a promising tool to predict the subcellular locations of apoptosis proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.