Prediction of DNA-binding proteins (DBPs) has become a popular research topic in protein science due to its crucial role in all aspects of biological activities. Even though considerable efforts have been devoted to developing powerful computational methods to solve this problem, it is still a challenging task in the field of bioinformatics. A hidden Markov model (HMM) profile has been proved to provide important clues for improving the prediction performance of DBPs. In this paper, we propose a method, called HMMPred, which extracts the features of amino acid composition and auto-and cross-covariance transformation from the HMM profiles, to help train a machine learning model for identification of DBPs. Then, a feature selection technique is performed based on the extreme gradient boosting (XGBoost) algorithm. Finally, the selected optimal features are fed into a support vector machine (SVM) classifier to predict DBPs. The experimental results tested on two benchmark datasets show that the proposed method is superior to most of the existing methods and could serve as an alternative tool to identify DBPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.