To investigate the prevalence and risk factors for pterygium in rural older adults in Shandong Province, eastern China, a population-based, cross-sectional study was performed from April to July 2008. By means of cluster random sampling methods, a total of 19,583 people aged 50 years or above were randomly selected from four rural counties. Out of 19,583 people, 1,767 residents were excluded mainly because they were migrant workers when this study was performed. Finally, 17,816 (90.98%) people were included as eligible subjects. They received a comprehensive eye examination and a structured questionnaire voluntarily. Patients with pterygium were defined as having pterygium at the time of survey or pterygium surgery had been performed. 1,876 people were diagnosed as pterygium, either unilateral (1,083) or bilateral (793), which is equivalent to a prevalence of 10.53% (95% CI, 10.08–10.98). The multivariate logistic regression analysis showed that pterygium was independently associated with older age, areas, outdoor time, educational level, and use of hat and/or sunglasses. The prevalence of pterygium increased with age and hours spent under sunshine per day. Meanwhile, the higher the educational level and the more use of hat and/or sunglasses, the lower the pterygium prevalence.
PurposeTo assess the accuracy of the Plusoptix A09 photoscreener in detecting amblyopia risk factors in children and determine referral criteria when using Plusoptix A09 for a large-scale vision screening.MethodsPediatric patients attending our eye clinic underwent a comprehensive ophthalmic examination that included photorefraction, orthoptic examination, anterior segment assessment, fundus examination and cycloplegic retinoscopy. The measurements were collected for statistical analyses.ResultsOne hundred and seventy-eight children (mean age ± SD: 6.2±2.4 years, range: 2.2 to 14.1 years) were included in the study. The mean spherical equivalent (SE) obtained using Plusoptix A09 (PSE) was 0.57 D lower than that obtained from cycloplegic retinoscopy (CRSE) (P = 0.00). However, there was no statistically significant difference of Jackson cross cylinder J0 and J45 between Plusoptix A09 (PJ) and cycloplegic retinoscopy (CRJ) (P = 0.14, P = 0.26). The relationship of SE obtained from Plusoptix A09 and SE obtained from cycloplegic retinoscopy was presented as the equation: CRSE = 0.358 + 0.776 PSE + 0.064 PSE 2 + 0.011 PSE 3. Based on the Receiver Operating Characteristic (ROC) curve, the Plusoptix A09 had an overall sensitivity of 94.9% and specificity of 67.5% for detecting refractive amblyopia risk factors. The sensitivity and specificity of the Plusoptix A09 for detection of strabismus were 40.7% and 98.3%, respectively; detection of amblyopia and/or strabismus was 84.7% and 63.2%, respectively.ConclusionsThe Plusoptix A09 photoscreener underestimated hyperopia and overestimated myopia according to SE when compared with cycloplegic retinoscopy. The accuracy of the Plusoptix A09 in detecting amblyopia risk factors in children could be improved by the regression equation and optimized criteria for refractive amblyopia risk factors developed in the present study. Moreover, the Plusoptix A09 photoscreener is not suitable for a large-scale strabismus screening when it is applied solely.
PurposeTo determine the distributions and relation of central corneal thickness (CCT) and intraocular pressure (IOP) by NT-530P in Chinese juveniles, and the effect of gender, age, height, weight and refractive errors on the CTT and IOP.MethodsCCT and IOP of 982 eyes in 514 juveniles aged from 7 to 18 years were measured with NT-530P. Multi-linear regression and ANOVA analysis were used to analyze the relation of CCT and IOP, and the effect of gender, age, height, weight, refractive condition on CCT and IOP respectively.ResultsThe mean CCT and IOP were 554.19±35.46 µm and 15.31±2.57 mmHg. There were significant correlations between the CCT and IOP values. Linear regression analysis revealed a positive correlation between CCT and IOP (r = 0.44, P<0.05). Linear regression equation: IOP = −2.35+0.032CCT, which means the IOP will increase 0.32 mm Hg for every 10-µm increase in CCT. The mean of Corrected IOP (CIOP) was 15.32±2.38 mmHg and had no relation with CCT. There was a negative correlation between refraction degree and CCT (P<0.05), but no correlation between refraction degree and IOP. Multi-linear regression model revealed that the height, weight, age and gender have no effect on the distribution of CCT and IOP respectively.ConclusionsThere is a 0.32 mmHg increase in IOP for every 10-µm increase in CCT. The height, weight, age and gender has no effect on the distribution of CCT and IOP. CCT will become thinner with myopia diopters increases in juveniles. The measurement of CCT is helpful in evaluating the actual IOP correctly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.