A simple multiwavelength Tm-doped fiber laser at the 2 μm band based on multimode interference (MMI) is proposed and experimentally demonstrated. In this scheme, a 4 m Tm-doped single-mode fiber is pumped by a 1568 nm laser, and a single-mode-multimode-single-mode (SMS) fiber structure is used as an MMI filter in which the multimode fiber is used to tune the laser. Laser operation of up to three wavelengths is obtained based on the MMI filter. The wavelengths can be tuned by adjusting the polarization controller and rotating the multimode fiber in the SMS structure, and the tuning region is about 24 nm, i.e., 1892-1916 nm. The side-mode suppression ratio of the laser is about 54 dB. The 3 dB linewidth is less than 0.04 nm. Peak fluctuation at each wavelength is analyzed, and the results show that the power fluctuation is less than 3 dB around the average power.
We propose and demonstrate the operation of Q-switched mode-locked square-wave pulses in a thulium-holmium co-doped fiber laser. By using a nonlinear amplifying loop mirror, continuous square-wave dissipative soliton resonance pulse is obtained with 4.4 MHz repetition rate. With the increasing pump power, square-wave pulse duration can be broadened from 1.7 ns to 3.2 ns. On such basis Q-switched mode-locked operation is achieved by properly setting the pump power and the polarization controllers. The internal mode-locked pulses in Q-switched envelope still keep square-wave type. The Q-switched repetition rate can be varied from 41.6 kHz to 74 kHz by increasing pump power. The corresponding average single-pulse energy increases from 2.67 nJ to 5.2 nJ. The average peak power is also improved from 0.6 W to 1.1 W when continuous square-wave operation is changed into Q-switched mode-locked operation. It indicates that Q-switched mode-locked operation is an effective method to increase the square-wave pulse energy and peak power.
We experimentally demonstrate a free-space data transmission system in an indoor simulated smoke chamber with a laser carrier of an erbium-doped actively mode-locked fiber laser and a holmium-doped actively mode-locked fiber laser. Two additional semiconductor lasers operating at 0.85 and 1.06 µm are used to calibrate the visibility of a smoke channel using the Ijaz model and compare smoke attenuation with 1.55 and 2.04 µm lasers. The eye patterns and bit error rates of 1.55 and 2.04 µm laser carriers with a data rate of 4.04 Gbps are investigated experimentally at 0.5, 0.05, and 0.005 km visibilities. The experimental results show that the smoke attenuation is wavelength dependent for V < 0.5 km. As the visibility decreases, the long wavelength laser is less affected by the attenuation and power fluctuation caused by Mie scattering. The measured optical signal-to-noise ratios of the 1.55 and 2.04 µm laser carriers for V = 0.005 km are 4.83 and 8.62 dB, respectively. The corresponding link sensitivities are −14.59 and −17.74 dBm, respectively, indicating that the 2.04 µm data transmission system is more reliable under an extremely dense smoke condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.