Author contributions: Mathew S and Faheem M contributed equally to this manuscript; Qadri I conceived and designed the topic; Mathew S, Faheem M, Ibrahim SM, Iqbal W and Rauff B contributed to materials and wrote the paper; Faheem M, Ibrahim SM, Iqbal W, Rauff B, Fatima K and Qadri I contributed to proof reading of the manuscript.Supported by KACST large R and D grant to Ishtiaq Qadri (#162-34).Conflict-of-interest statement: Authors declare no conflict of interests for this article. AbstractChronic hepatitis C virus (HCV) infection exhibits a wide range of extrahepatic complications, affecting various organs in the human body. Numerous HCV patients suffer neurological manifestations, ranging from cognitive impairment to peripheral neuropathy. Overexpression of the host immune response leads to the production of immune complexes, cryoglobulins, as well as autoantibodies, which is a major pathogenic mechanism responsible for nervous system dysfunction. Alternatively circulating inflammatory cytokines and chemokines and HCV replication in neurons is another factor that severely affects the nervous system. Furthermore, HCV infection causes both sensory and motor peripheral neuropathy in the mixed cryoglobulinemia as well as known as an important risk aspect for stroke. These extrahepatic manifestations are the reason behind underlying hepatic encephalopathy and chronic liver disease. The brain is an apt location for HCV replication, where the HCV virus may directly wield neurotoxicity. Other mechanisms that takes place by chronic HCV infection due the pathogenesis of neuropsychiatric disorders includes derangement of metabolic pathways of infected cells, autoimmune disorders, systemic or cerebral inflammation and alterations in neurotransmitter circuits. HCV and its pathogenic role is suggested by enhancement of psychiatric and neurological symptoms in patients attaining a sustained virologic response followed by treatment with interferon; however, further studies are required to fully assess the impact of HCV infection and its specific antiviral targets associated with neuropsychiatric disorders. REVIEWSubmit a
Tumor comprises of heterogeneous population of cells where not all the disseminated cancer cells have the prerogative and “in-build genetic cues” to form secondary tumors. Cells with stem like properties complemented by key signaling molecules clearly have shown to exhibit selective growth advantage to form tumors at distant metastatic sites. Thus, defining the role of cancer stem cells (CSC) in tumorigenesis and metastasis is emerging as a major thrust area for therapeutic intervention. Precise relationship and regulatory mechanisms operating in various signal transduction pathways during cancer dissemination, extravasation and angiogenesis still remain largely enigmatic. How the crosstalk amongst circulating tumor cells (CTC), epithelial mesenchymal transition (EMT) process and CSC is coordinated for initiating the metastasis at secondary tissues, and during cancer relapse could be of great therapeutic interest. The signal transduction mechanisms facilitating the dissemination, infiltration of CSC into blood stream, extravasations, progression of metastasis phenotype and angiogenesis, at distant organs, are the key pathologically important vulnerabilities being elucidated. Therefore, current new drug discovery focus has shifted towards finding “key driver genes” operating in parallel signaling pathways, during quiescence, survival and maintenance of stemness in CSC. Understanding these mechanisms could open new horizons for tackling the issue of cancer recurrence and metastasis-the cause of ~90% cancer associated mortality. To design futuristic & targeted therapies, we propose a multi-pronged strategy involving small molecules, RNA interference, vaccines, antibodies and other biotechnological modalities against CSC and the metastatic signal transduction cascade.
Chronic hepatitis B virus (HBV) infection has become one of the leading causes of liver cirrhosis and hepatocellular carcinoma globally. The discovery of sodium taurocholate co-transporting polypeptide (NTCP), a solute carrier, as a key receptor for HBV and hepatitis D virus (HDV) has opened new avenues for HBV treatment. Additionally, it has led researchers to generate hepatoma cell lines (including HepG2-NTCP and Huh-7-NTCP) susceptible to HBV infection in vitro, hence, paving the way to develop and efficiently screen new and novel anti-HBV drugs. This review summarizes the history, function and critical findings regarding NTCP as a viral receptor for HBV/HDV, and it also discusses recently developed drugs targeting NTCP.
Background: The lack of a stable source of hepatocytes is one of major limitations in hepatocyte transplantation and clinical applications of a bioartificial liver. Human embryonic stem cells (hESCs) with a high degree of self-renewal and totipotency are a potentially limitless source of a variety of cell lineages, including hepatocytes. Many techniques have been developed for effective differentiation of hESCs into functional hepatocyte-like cells. However, the application of hESC-derived hepatocyte-like cells (hESC-Heps) in the clinic has been constrained by the low yield of fully differentiated cells, small-scale culture, difficulties in harvesting, and immunologic graft rejection. To resolve these shortcomings, we developed a novel 3D differentiation system involving alginate-microencapsulated spheres to improve current hepatic differentiation, providing ready-to-use hESC-Heps. Methods: In this study, we used alginate microencapsulation technology to differentiate human embryonic stem cells into hepatocyte-like cells (hESC-Heps). Hepatic markers of hESC-Heps were examined by qPCR and Western blotting, and hepatic functions of hESC-Heps were evaluated by indocyanine-green uptake and release, and ammonia removal. Results: The maturity and hepatic functions of the hESC-Heps derived from this 3D system were better than those derived from 2D culture. Hepatocyte-enriched genes, such as HNF4α, AFP, and ALB, were expressed at higher levels in 3D hESC-Heps than in 2D hESC-Heps. 3D hESC-Heps could metabolize indocyanine green and had better capacity to scavenge ammonia. In addition, the 3D sodium alginate hydrogel microspheres could block viral entry into the microspheres, and thus protect hESC-Heps in 3D microspheres from viral infection. Conclusion: We developed a novel 3D differentiation system for differentiating hESCs into hepatocyte-like cells by using alginate microcapsules.
Background: The role of alkaloids isolated from Rhazya stricta Decne (Apocynaceae family) (RS) in targeting genes involved in cancer and metastasis remains to be elucidated. Objective: Identify and characterize new compounds from RS, which inhibit gene(s) involved in the survival, invasion, self-renewal, and metastatic processes of cancer cells. Methods: Bioinformatics study was performed using HISAT2, stringtie, and ballgown pipeline to understand expressional differences between a normal epithelial cell line-MCF10A and MCF7. NMR and ATR-FTIR were performed to elucidate the structure of rhazyaminine (R.A), isolated from R stricta. Cell viability assay was performed using 0, 25, and 50 μg/mL of total extract of R stricta (TERS) and R.A, respectively, for 0, 24, and 48 hours, followed by scratch assay. In addition, total RNA was isolated for RNA-seq analysis of MCF7 cell line treated with R.A followed by qRT-PCR analysis of Bcl-2 gene. Results: Deptor, which is upregulated in MCF7 compared with MCF10A as found in our bioinformatics study was downregulated by R.A. Furthermore, R.A effectively reduced cell viability to around 50% (P < .05) and restricted cell migration in scratch assay. Thirteen genes, related to metastasis and cancer stem cells, were downregulated by R.A according to RNA-seq analysis. Additionally, qRT-PCR validated the downregulation of Bcl-2 gene in R.A-treated cells by less than 0.5 folds (P < .05). Conclusion: R.A successfully downregulated key genes involved in apoptosis, cell survival, epithelial-mesenchymal transition, cancer stem cell proliferation, and Wnt signal transduction pathway making it an excellent "lead candidate" molecule for in vivo proof-of-concept studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.