Cross talk, mediated by exosomes, between normal stem cells and cancer stem cells (CSCs) in the tumor microenvironment has been given less attention so far. In addition, no publications are available in the literature that address the in vivo impact of exosomes derived from CSCs and mesenchymal stem cells (MSCs) on progression of long-term hepatocellular carcinoma (HCC). Herein, we hypothesized that transfer of exosomes among the cells in the HCC microenvironment could either induce or inhibit tumor growth and metastasis depending on their source. To check this hypothesis, we investigated the effect of exosomes coming from two different stem cell populations, hepatic CSCs and bone marrow (BM) MSCs, on progression of long-term DEN-induced HCC in rats and the involved underlying mechanisms. CSCs-exosomes induced a significant increase in liver relative weight and serum levels of cancer markers (AFP and GGT) and liver enzymes (ALT, AST, and ALP), intensive immunostaining for the HCC marker GST-P, and an increased number and area of tumor nodules as compared to HCC rats injected by PBS. CSCs-exosomes also decreased apoptosis (marked by downregulation of Bax and p53 and upregulation of Bcl2, and increased immunostaining of PCNA), increased angiogenetic activity (revealed by upregulation of VEGF), enhanced metastasis and invasiveness (indicated by upregulation of P13K and ERK proteins and their downstream target MMP9 and downregulation of TIMP1), and induced epithelial mesenchymal transition (marked by increased serum and hepatic level of TGFβ1 mRNA and protein). Notably, CSCs-exosomes also elevated HCC exosomal microRNA (miR) 21, exosomal long noncoding (lnc) RNA Tuc339, lncHEIH, and the HCC lncHOTAIR and decreased liver miR122 and HCC miRs (miR148a, miR16, and miR125b). All these cellular, functional, and molecular changes were reversed following injection of BM-MSCs-exosomes. However, both CSCs- and MSCs-exosomes failed to change the elevated oxidative stress or the inhibited antioxidant activities induced by HCC. Collectively, our results revealed a tumor stimulatory effect (induction of tumor growth, progression, and metastasis) for exosomes derived from CSCs and an inhibitory effect for exosomes derived from MSCs. These results provide valuable insight on the effect of CSCs- and MSCs-exosomes on HCC growth and progression in vivo, which may be helpful to understand the mechanism of HCC development.
BackgroundMeningioma tumors arise in arachnoid membranes, and are the most reported central nervous system (CNS) tumors worldwide. Up to 20% of grade I meningioma tumors reoccur and currently predictive cancer stem cells (CSCs) markers for aggressive and drug resistant meningiomas are scarce.MethodsMeningioma tissues and primary cell lines were investigated using whole transcriptome microarray analysis, immunofluorescence staining of CSCs markers (including CD133, Sox2, Nestin, and Frizzled 9), and drug treatment with cisplatin or etoposide.ResultsUnsupervised hierarchical clustering of six meningioma samples separated tissues into two groups. Analysis identified stem cells related pathways to be differential between the two groups and indicated the de-regulation of the stem cell associated genes Reelin (RELN), Calbindin 1 (CALB1) and Anterior Gradient 2 Homolog (AGR2). Immunofluorescence staining for four tissues confirmed stemness variation in situ. Biological characterization of fifteen meningioma primary cell lines concordantly separated cells into two functionally distinct sub-groups. Pleomorphic cell lines (NG type) grew significantly faster than monomorphic cell lines (G type), had a higher number of cells that express Ki67, and were able to migrate aggressively in vitro. In addition, NG type cell lines had a lower expression of nuclear Caspase-3, and had a significantly higher number of CSCs co-positive for CD133+ Sox2+ or AGR2+ BMI1+. Importantly, these cells were more tolerant to cisplatin and etoposide treatment, showed a lower level of nuclear Caspase-3 in treated cells and harbored drug resistant CSCs.ConclusionCollectively, analyses of tissues and primary cell lines revealed stem cell associated genes as potential targets for aggressive and drug resistant meningiomas.Electronic supplementary materialThe online version of this article (doi:10.1186/s12935-017-0441-7) contains supplementary material, which is available to authorized users.
Tumor comprises of heterogeneous population of cells where not all the disseminated cancer cells have the prerogative and “in-build genetic cues” to form secondary tumors. Cells with stem like properties complemented by key signaling molecules clearly have shown to exhibit selective growth advantage to form tumors at distant metastatic sites. Thus, defining the role of cancer stem cells (CSC) in tumorigenesis and metastasis is emerging as a major thrust area for therapeutic intervention. Precise relationship and regulatory mechanisms operating in various signal transduction pathways during cancer dissemination, extravasation and angiogenesis still remain largely enigmatic. How the crosstalk amongst circulating tumor cells (CTC), epithelial mesenchymal transition (EMT) process and CSC is coordinated for initiating the metastasis at secondary tissues, and during cancer relapse could be of great therapeutic interest. The signal transduction mechanisms facilitating the dissemination, infiltration of CSC into blood stream, extravasations, progression of metastasis phenotype and angiogenesis, at distant organs, are the key pathologically important vulnerabilities being elucidated. Therefore, current new drug discovery focus has shifted towards finding “key driver genes” operating in parallel signaling pathways, during quiescence, survival and maintenance of stemness in CSC. Understanding these mechanisms could open new horizons for tackling the issue of cancer recurrence and metastasis-the cause of ~90% cancer associated mortality. To design futuristic & targeted therapies, we propose a multi-pronged strategy involving small molecules, RNA interference, vaccines, antibodies and other biotechnological modalities against CSC and the metastatic signal transduction cascade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.