We construct efficient ring signatures (RS) from isogeny and lattice assumptions. Our ring signatures are based on a logarithmic OR proof for group actions. We instantiate this group action by either the CSIDH group action or an MLWE-based group action to obtain our isogeny-based or lattice-based RS scheme, respectively. Even though the OR proof has a binary challenge space and therefore requires a number of repetitions which is linear in the security parameter, the sizes of our ring signatures are small and scale better with the ring size N than previously known post-quantum ring signatures. We also construct linkable ring signatures (LRS) that are almost as efficient as the non-linkable variants. The isogeny-based scheme produces signatures whose size is an order of magnitude smaller than all previously known logarithmic post-quantum ring signatures, but it is relatively slow (e.g. 5.5 KB signatures and 79 s signing time for rings with 8 members). In comparison, the latticebased construction is much faster, but has larger signatures (e.g. 30 KB signatures and 90 ms signing time for the same ring size). For small ring sizes our lattice-based ring signatures are slightly larger than state-ofthe-art schemes, but they are smaller for ring sizes larger than N ≈ 1024.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.