Preparation of hyperdeproteinized natural rubber was made from fresh latex and preserved highammonia latex by treatment with urea in the presence of sodium dodecyl sulfate. Concentration of urea, temperature, and time for the incubation were investigated to remove the proteins effectively. Under the best conditions, the total nitrogen content and amount of allergenic proteins for the deproteinized rubbers were 0.005 wt % and 1.0 g/ml, respectively, which were less than those of natural rubber deproteinized with proteolytic enzyme. The hyper-deproteinized natural rubber was proved through FT IR spectroscopy.
The phenomenon of storage hardening in solid natural rubber (NR) is presumed to occur by means of reactions between some non-rubber components and abnormal groups in rubber molecule. The main non-rubber constituents in NR are composed of proteins and lipids. The storage hardening behavior of NR purified by enzymatic deproteinization and transesterification was analyzed under high and low humidity conditions using phosphorus pentoxide (P2O5) and sodium hydroxide (NaOH). The NR obtained from centrifuged fresh natural rubber latex (CFNR) and deproteinized NR latex (DPNR) showed significant increase in the hardening plasticity index (PH) value during storage; while that of the transesterified NR (TENR) and transesterified DPNR (DPTE-NR) was almost constant during storage. After keeping samples under high humidity conditions, the fresh natural rubber (FNR), CFNR and DPNR showed constant PH value, while that of the TENR and DPTE-NR decreased during storage. The FNR, CFNR and DPNR showed a clear increase in the gel fraction after the occurrence of storage hardening reaction. The gel fraction showed molecular weight between crosslinks (Mc) of about 104. Glass transition temperature (Tg) of gel fraction was higher than that observed in the case of sol fraction. The formation of crosslinking and branching during accelerated storage was presumed to be due to the chemical bonding between the active functional groups in the long-chain fatty acid of phospholipids at the terminating end of rubber molecules under low humidity conditions.
Reaction after mixing of liquid epoxidized natural rubber/poly(L-lactide) blend was performed to enhance the compatibility of the blend. The liquid epoxidized natural rubber was prepared by epoxidation of deproteinized natural rubber with peracetic acid in latex stage followed by depolymerization with peroxide and propanal. The resulting liquid deproteinized natural rubber having epoxy group (LEDPNR) was mixed with poly(L-lactide) (PLLA) to investigate the compatibility of the blend through differential scanning calorimetry, optical light microscopy, and NMR spectroscopy. After heating the blend at 473 K for 20 min, glass transition temperature (T g ) of LEDPNR in LEDPNR/PLLA blend increased from 251 to 259 K, while T g and melting temperature (T m ) of PLLA decreased from 337 to 332 K and 450 to 445 K, respectively, suggesting that the compatibility of LEDPNR/ PLLA blend was enhanced by a reaction between the epoxy group of LEDPNR and the ester group of PLLA. The reaction was proved by high-resolution solid-state 13 C NMR spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.