Amorphization is an attractive formulation technique for drugs suffering from poor aqueous solubility as a result of their high lattice energy. Computational models that can predict the material properties associated with amorphization, such as glass-forming ability (GFA) and crystallization behavior in the dry state, would be a time-saving, cost-effective, and material-sparing approach compared to traditional experimental procedures. This article presents predictive models of these properties developed using support vector machine (SVM) algorithm. The GFA and crystallization tendency were investigated by melt-quenching 131 drug molecules in situ using differential scanning calorimetry. The SVM algorithm was used to develop computational models based on calculated molecular descriptors. The analyses confirmed the previously suggested cutoff molecular weight (MW) of 300 for glass-formers, and also clarified the extent to which MW can be used to predict the GFA of compounds with MW < 300. The topological equivalent of Grav3_3D, which is related to molecular size and shape, was a better descriptor than MW for GFA; it was able to accurately predict 86% of the data set regardless of MW. The potential for crystallization was predicted using molecular descriptors reflecting Hückel pi atomic charges and the number of hydrogen bond acceptors. The models developed could be used in the early drug development stage to indicate whether amorphization would be a suitable formulation strategy for improving the dissolution and/or apparent solubility of poorly soluble compounds.
The purpose of this study was to evaluate the effect of carrier particle size on properties of dry powder and its effect on dry powder inhaler (DPI) performance. Commercial α-lactose-monohydrate, a commonly used carrier in DPI formulations, was carefully sieved to obtain different lactose size fractions, namely Lac A (90–125 μm), Lac B (63–90 μm), Lac C (45–63 μm), Lac D (20–45 μm), and Lac E (< 20 μm). The lactose samples were analysed in terms of size, shape, solid state, density, and flowability. Lactose particles were blended with budesonide (< 5 μm) powder to generate five different formulations. These formulations were then evaluated in terms of budesonide–lactose adhesion properties, drug content homogeneity, and in vitro aerosolisation performance. The results demonstrated that lactose samples with smaller particle volume mean diameter have higher amorphous lactose content, higher true density (linear, r2 = 0.9932), higher surface smoothness (linear, r2 = 0.8752), smaller angularity (linear, r2 = 0.921), smaller bulk density, higher porosity (linear, r2 = 0.914), poorer flowability, and higher specific surface area. In general, the smaller the lactose particles the smaller are the budesonide–lactose adhesion properties. Budesonide formulated with smaller lactose particles exhibited smaller aerodynamic diameter and higher amounts of budesonide were delivered to lower stages of the impactor indicating improved DPI aerosolisation performance. However, the use of lactose particles with smaller volume mean diameter had a detrimental effect on budesonide content homogeneity and caused an increase in the amounts of budesonide deposited on oropharyngeal region. Therefore, particle size of the lactose within dry powder inhaler formulations should be selected carefully. Accordingly, higher drug aerosolisation efficiency of lactose particles with smaller size may have to be balanced due to considerations of other disadvantages including poorer flowability, reduced formulation stability, higher potential side effects, and higher dose variability
Dry powder inhaler formulations comprising commercial lactose-drug blends can show restricted detachment of drug from lactose during aerosolisation, which can lead to poor fine particle fractions (FPFs) which are suboptimal. The aim of the present study was to investigate whether the crystallisation of lactose from different ethanol/butanol co-solvent mixtures could be employed as a method of altering the FPF of salbutamol sulphate from powder blends. Lactose particles were prepared by an anti-solvent recrystallisation process using various ratios of the two solvents. Crystallised lactose or commercial lactose was mixed with salbutamol sulphate and in vitro deposition studies were performed using a multistage liquid impinger. Solid-state characterisation results showed that commercial lactose was primarily composed of the α-anomer whilst the crystallised lactose samples comprised a α/β mixture containing a lower number of moles of water per mole of lactose compared to the commercial lactose. The crystallised lactose particles were also less elongated and more irregular in shape with rougher surfaces. Formulation blends containing crystallised lactose showed better aerosolisation performance and dose uniformity when compared to commercial lactose. The highest FPF of salbutamol sulphate (38.0 ± 2.5%) was obtained for the lactose samples that were crystallised from a mixture of ethanol/butanol (20:60) compared to a FPF of 19.7 ± 1.9% obtained for commercial lactose. Engineered lactose carriers with modified anomer content and physicochemical properties, when compared to the commercial grade, produced formulations which generated a high FPF.
The aim of the present study was to investigate the effect of crystallising mannitol from different binary mixtures of acetone/water on the resultant physical properties and to determine the effects of any changes on in vitro aerosolisation performance, when the different mannitol crystals were used as a carrier in dry powder inhaler formulations containing salbutamol sulphate. Mannitol particles were crystallised under controlled conditions by dissolving the sugar in water and precipitating the sugar using binary mixtures of acetone/water in different percentages as anti-solvent media. For comparison purposes the physical properties and deposition behaviour of commercially available mannitol were also studied. SEM showed that all crystallised mannitol particles were more elongated than the commercial mannitol. Solid state studies revealed that commercial mannitol and mannitol crystallised using acetone in the presence of 10-25% v/v water as anti-solvent was beta-polymorphic form whereas mannitol crystallised in the presence of a small amount of water (0-7.5%) was the alpha-form. All the crystallised mannitol samples showed poor flowability. Nevertheless, the powdered crystallised mannitol and commercial samples were blended with salbutamol in the ratio 67.5:1. The aerosolisation performance of the formulations containing the engineered mannitol (evaluated using Multi Stage Liquid Impinger) was considerably better than that of the commercial mannitol formulation (the fine particle fraction was increased from 15.42% to 33.07-43.99%, for the formulations containing crystallised mannitol). Generally, carriers having a high tapped density and high fraction of fine carrier particles produced a high FPF. The improvement in the DPI performance could be attributed to the presence of elongated carrier particles with smooth surfaces since these are believed to have less adhesive forces between carrier and the drug resulting in easier detachment of the drug during the inhalation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.