Differential screening of the genes obtained from cDNA libraries of primary neuroblastomas (NBLs) between the favorable and unfavorable subsets has identified a novel gene BCH motif-containing molecule at the carboxyl terminal region 1 (BMCC1). Its 350 kDa protein product possessed a Bcl2-/adenovirus E1B nineteen kDa-interacting protein 2 (BNIP2) and Cdc42GAP homology domain in the COOHterminus in addition to P-loop and a coiled-coil region near the NH 2 -terminus. High levels of BMCC1 expression were detected in the human nervous system as well as spinal cord, brain and dorsal root ganglion in mouse embryo. The immunohistochemical study revealed that BMCC1 was positively stained in the cytoplasm of favorable NBL cells but not in unfavorable ones with MYCN amplification. The quantitative real-time reverse transcription-PCR using 98 primary NBLs showed that high expression of BMCC1 was a significant indicator of favorable NBL. In primary culture of newborn mice superior cervical ganglion (SCG) neurons, mBMCC1 expression was downregulated after nerve growth factor (NGF)-induced differentiation, and upregulated during the NGF-depletion-induced apoptosis. Furthermore, the proapoptotic function of BMCC1 was also suggested by increased expression in CHP134 NBL cells undergoing apoptosis after treatment with retinoic acid, and by an enhanced apoptosis after depletion of NGF in the SCG neurons obtained from newborn mice transgenic with BMCC1 in primary culture. Thus, BMCC1 is a new member of prognostic factors for NBL and may play an important role in regulating differentiation, survival and aggressiveness of the tumor cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.