Accurately mapping land use/land cover changes (LULCC) and forest disturbances provides valuable information for understanding the influence of anthropogenic activities on the environment at regional and global scales. Many approaches using satellite remote sensing data have been proposed for characterizing these long-term changes. However, a spatially and temporally consistent mapping of both LULCC and forest disturbances at medium spatial resolution is still limited despite their critical contributions to the carbon cycle. In this study, we examined the applicability of Landsat time series temporal segmentation and random forest classifiers to mapping LULCC and forest disturbances in Vietnam. We used the LandTrendr temporal segmentation algorithm to derive key features of land use/land cover transitions and forest disturbances from annual Landsat time series data. We developed separate random forest models for classifying land use/land cover and detecting forest disturbances at each segment and then derived LULCC and forest disturbances that coincided with each other during the period of 1988–2019. The results showed that both LULCC classification and forest disturbance detection achieved low accuracy in several classes (e.g., producer’s and user’s accuracies of 23.7% and 78.8%, respectively, for forest disturbance class); however, the level of accuracy was comparable to that of existing datasets using the same reference samples in the study area. We found relatively high confusion between several land use/land cover classes (e.g., grass/shrub, forest, and cropland) that can explain the lower overall accuracies of 67.6% and 68.4% in 1988 and 2019, respectively. The mapping of forest disturbances and LULCC suggested that most forest disturbances were followed by forest recovery, not by transitions to other land use/land cover classes. The landscape complexity and ephemeral forest disturbances contributed to the lower classification and detection accuracies in this study area. Nevertheless, temporal segmentation and derived features from LandTrendr were useful for the consistent mapping of LULCC and forest disturbances. We recommend that future studies focus on improving the accuracy of forest disturbance detection, especially in areas with subtle landscape changes, as well as land use/land cover classification in ambiguous and complex landscapes. Using more training samples and effective variables would potentially improve the classification and detection accuracies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.