Proteomics has opened a new horizon in biological sciences. Global proteomic analysis is a promising technology for the discovery of thousands of proteins, post-translational modifications, polymorphisms, and molecular interactions in a variety of biological systems. The activities and roles of the identified proteins must also be elucidated, but this is complicated by the inability of conventional proteomic methods to yield quantitative information for protein expression. Thus, a variety of biological systems remain “black boxes”. Quantitative targeted absolute proteomics (QTAP) enables the determination of absolute expression levels (mol) of any target protein, including low-abundance functional proteins, such as transporters and receptors. Therefore, QTAP will be useful for understanding the activities and roles of individual proteins and their differences, including normal/disease, human/animal, or in vitro/in vivo. Here, we describe the study protocols and precautions for QTAP experiments including in silico target peptide selection, determination of peptide concentration by amino acid analysis, setup of selected/multiple reaction monitoring (SRM/MRM) analysis in liquid chromatography–tandem mass spectrometry, preparation of protein samples (brain capillaries and plasma membrane fractions) followed by the preparation of peptide samples, simultaneous absolute quantification of target proteins by SRM/MRM analysis, data analysis, and troubleshooting. An application of QTAP in biological sciences was introduced that utilizes data from inter-strain differences in the protein expression levels of transporters, receptors, tight junction proteins and marker proteins at the blood–brain barrier in ddY, FVB, and C57BL/6J mice. Among 18 molecules, 13 (abcb1a/mdr1a/P-gp, abcc4/mrp4, abcg2/bcrp, slc2a1/glut1, slc7a5/lat1, slc16a1/mct1, slc22a8/oat3, insr, lrp1, tfr1, claudin-5, Na+/K+-ATPase, and γ-gtp) were detected in the isolated brain capillaries, and their protein expression levels were within a range of 0.637-101 fmol/μg protein. The largest difference in the levels between the three strains was 2.2-fold for 13 molecules, although bcrp and mct1 displayed statistically significant differences between C57BL/6J and the other strain(s). Highly sensitive simultaneous absolute quantification achieved by QTAP will increase the usefulness of proteomics in biological sciences and is expected to advance the new research field of pharmacoproteomics (PPx).
The purpose of the present study was to examine simultaneously the absolute protein amounts of 152 membrane and membrane-associated proteins, including 30 metabolizing enzymes and 107 transporters, in pooled microsomal fractions of human liver, kidney, and intestine by means of SWATH-MS with stable isotope-labeled internal standard peptides, and to compare the results with those obtained by MRM/SRM and high resolution (HR)-MRM/PRM. The protein expression levels of 27 metabolizing enzymes, 54 transporters, and six other membrane proteins were quantitated by SWATH-MS; other targets were below the lower limits of quantitation. Most of the values determined by SWATH-MS differed by less than 50% from those obtained by MRM/SRM or HR-MRM/PRM. Various metabolizing enzymes were expressed in liver microsomes more abundantly than in other microsomes. Ten, 13, and eight transporters listed as important for drugs by International Transporter Consortium were quantified in liver, kidney, and intestinal microsomes, respectively. Our results indicate that SWATH-MS enables large-scale multiplex absolute protein quantification while retaining similar quantitative capability to MRM/SRM or HR-MRM/PRM. SWATH-MS is expected to be useful methodology in the context of drug development for elucidating the molecular mechanisms of drug absorption, metabolism, and excretion in the human body based on protein profile information.
Molecular biomarkers in blood are needed to aid the early diagnosis and clinical assessment of glioblastoma (GBM). Here, in order to identify biomarker candidates in plasma of GBM patients, we performed quantitative comparisons of the plasma proteomes of GBM patients (n = 14) and healthy controls (n = 15) using SWATH mass spectrometry analysis. The results were validated by means of quantitative targeted absolute proteomics analysis. As a result, we identified eight biomarker candidates for GBM (leucine-rich alpha-2-glycoprotein (LRG1), complement component C9 (C9), C-reactive protein (CRP), alpha-1-antichymotrypsin (SERPINA3), apolipoprotein B-100 (APOB), gelsolin (GSN), Ig alpha-1 chain C region (IGHA1), and apolipoprotein A-IV (APOA4)). Among them, LRG1, C9, CRP, GSN, IGHA1, and APOA4 gave values of the area under the receiver operating characteristics curve of greater than 0.80. To investigate the relationships between the biomarker candidates and GBM biology, we examined correlations between plasma concentrations of biomarker candidates and clinical presentation (tumor size, progression-free survival time, or overall survival time) in GBM patients. The plasma concentrations of LRG1, CRP, and C9 showed significant positive correlations with tumor size (R2 = 0.534, 0.495, and 0.452, respectively).
Chimeric mice with humanized liver (PXB mice) have been generated by transplantation of urokinase-type plasminogen activator/severe combined immunodeficiency mice with human hepatocytes. The purpose of the present study was to clarify the protein expression levels of metabolizing enzymes and transporters in humanized liver of PXB mice transplanted with hepatocytes from three different donors, and to compare their protein expressions with those of human livers to validate this human liver model. The protein expression levels of metabolizing enzymes and transporters were quantified in microsomal fraction and plasma membrane fraction, respectively, by means of liquid chromatography-tandem mass spectrometry. Protein expression levels of 12 human P450 enzymes, two human UDP-glucuronosyltransferases, eight human ATP binding cassette (ABC) transporters, and eight human solute carrier transporters were determined. The variances of protein expression levels among samples from mice humanized with hepatocytes from all donors were significantly greater than those from samples obtained from mice derived from each individual donor. Compared with the protein expression levels in human livers, all of the quantified metabolizing enzymes and transporters were within a range of 4-fold difference, except for CYP2A6, CYP4A11, bile salt export pump (BSEP), and multidrug resistance protein 3 (MDR3), which showed 4-to 5-fold differences between PXB mouse and human livers. The present study indicates that humanized liver of PXB mice is a useful model of human liver from the viewpoint of protein expression of metabolizing enzymes and transporters, but the results are influenced by the characteristics of the human hepatocyte donor.
Membrane transporter proteins may influence the sensitivity of cancer cells to anticancer drugs that can be recognized as substrates. The purpose of this study was to identify proteins that play a key role in the drug sensitivity of stomach and breast cancer cell lines by measuring the absolute protein expression levels of multiple transporters and other membrane proteins and examining their correlation to drug sensitivity. Absolute protein expression levels of 90 membrane proteins were examined by quantitative targeted absolute proteomics using liquid chromatography-linked tandem mass spectrometry. Among them, 11 and 14 membrane proteins, including transporters, were present in quantifiable amounts in membrane fraction of stomach cancer and breast cancer cell lines, respectively. In stomach cancer cell lines, the protein expression level of multidrug resistance-associated protein 1 (MRP1) was inversely correlated with etoposide sensitivity. MK571, an MRP inhibitor, increased both the cell-to-medium ratio of etoposide and the etoposide sensitivity of MRP1-expressing stomach cancer cell lines. In breast cancer cell lines, the protein expression level of reduced folate carrier 1 (RFC1) was directly correlated with methotrexate (MTX) sensitivity. Initial uptake rate and steady-state cell-to-medium ratio of [ 3 H]MTX were correlated with both RFC1 expression level and MTX sensitivity. These results suggest that MRP1 modulates the etoposide sensitivity of stomach cancer cell lines and RFC1 modulates the MTX sensitivity of breast cancer cell lines. Our results indicate that absolute quantification of multiple membrane proteins could be a useful strategy for identification of candidate proteins involved in drug sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.