Rice plants grown in anaerobic paddy soil prefer to use ammonium ion as an inorganic nitrogen source for their growth. The ammonium ions are assimilated by the coupled reaction of glutamine synthetase (GS) and glutamate synthase (GOGAT). In rice, there is a small gene family for GOGAT: there are two NADH-dependent types and one ferredoxin (Fd)-dependent type. Fd-GOGAT is important in the re-assimilation of photorespiratorily generated ammonium ions in chloroplasts. Although cell-type and age-dependent expression of two NADH-GOGAT genes has been well characterized, metabolic function of individual gene product is not fully understood. Reverse genetics approach is a direct way to characterize functions of isoenzymes. We have isolated a knockout rice mutant lacking NADH-dependent glutamate synthase1 (NADH-GOGAT1) and our studies show that this isoenzyme is important for primary ammonium assimilation in roots at the seedling stage. NADH-GOGAT1 is also important in the development of active tiller number, when the mutant was grown in paddy field until the harvest. Expression of NADH-GOGAT2 and Fd-GOGAT in the mutant was identical with that in wild-type, suggesting that these GOGATs are not able to compensate for NADH-GOGAT1 function.
Root system development is an important target for improving yield in cereal crops. Active root systems that can take up nutrients more efficiently are essential for enhancing grain yield. In this study, we attempted to identify quantitative trait loci (QTL) involved in root system development by measuring root length of rice seedlings grown in hydroponic culture. Reliable growth conditions for estimating the root length were first established to renew nutrient solutions daily and supply NH4+ as a single nitrogen source. Thirty-eight chromosome segment substitution lines derived from a cross between ‘Koshihikari’, a japonica variety, and ‘Kasalath’, an indica variety, were used to detect QTL for seminal root length of seedlings grown in 5 or 500 μM NH4+. Eight chromosomal regions were found to be involved in root elongation. Among them, the most effective QTL was detected on a ‘Kasalath’ segment of SL-218, which was localized to the long-arm of chromosome 6. The ‘Kasalath’ allele at this QTL, qRL6.1, greatly promoted root elongation under all NH4+ concentrations tested. The genetic effect of this QTL was confirmed by analysis of the near-isogenic line (NIL) qRL6.1. The seminal root length of the NIL was 13.5–21.1% longer than that of ‘Koshihikari’ under different NH4+ concentrations. Toward our goal of applying qRL6.1 in a molecular breeding program to enhance rice yield, a candidate genomic region of qRL6.1 was delimited within a 337 kb region in the ‘Nipponbare’ genome by means of progeny testing of F2 plants/F3 lines derived from a cross between SL-218 and ‘Koshihikari’.Electronic supplementary materialThe online version of this article (doi:10.1007/s00122-010-1328-3) contains supplementary material, which is available to authorized users.
Inorganic ammonium ions are assimilated by a coupled reaction of glutamine synthetase and glutamate synthase (GOGAT). In rice, three genes encoding either ferredoxin (Fd)-GOGAT, NADH-GOGAT1, or NADH-GOGAT2, have been identified. OsNADH-GOGAT2, a newly identified gene, was expressed mainly in fully expanded leaf blades and leaf sheaths. Although the distinct expression profile to OsNADH-GOGAT1, which is mainly detected in root tips, developing leaf blades, and grains, was shown in our previous studies, physiological role of NADH-GOGAT2 is not yet known. Here, we isolated retrotransposon mediated-knockout mutants lacking OsNADH-GOGAT2. In rice grown under paddy field conditions, disruption of the OsNADH-GOGAT2 gene caused a remarkable decrease in spikelet number per panicle associated with a reductions in yield and whole plant biomass, when compared with wild-type (WT) plants. The total nitrogen contents in the senescing leaf blade of the mutants were approximately a half of the WT plants. Expression of this gene was mainly detected in phloem companion cells and phloem parenchyma cells associated with large vascular bundles in fully expanded leaf blades, when the promoter region fused with a β-glucuronidase gene was introduced into the WT rice. These results suggest that the NADH-GOGAT2 is important in the process of glutamine generation in senescing leaves for the remobilization of leaf nitrogen through phloem to the panicle during natural senescence. These results also indicate that other GOGATs, i.e., NADH-GOGAT1 and ferredoxin-GOGAT are not able to compensate the function of NADH-GOGAT2.
Nitrogen is one of the most important elements for plant growth, and urea is one of the most frequently used nitrogen fertilizers worldwide. Besides the exogenously-supplied urea to the soil, urea is endogenously synthesized during secondary nitrogen metabolism. Here, we investigated the contribution of a urea transporter, DUR3, to rice production using a reverse genetic approach combined with localization studies. Tos17 insertion lines for DUR3 showed a 50% yield reduction in hydroponic culture, and a 26.2% yield reduction in a paddy field, because of decreased grain filling. Because shoot biomass production and shoot total N was not reduced, insertion lines were disordered not only in nitrogen acquisition but also in nitrogen allocation. During seed development, DUR3 insertion lines accumulated nitrogen in leaves and could not sufficiently develop their panicles, although shoot and root dry weights were not significantly different from the wild-type. The urea concentration in old leaf harvested from DUR3 insertion lines was lower than that in wild-type. DUR3 promoter-dependent -glucuronidase (GUS) activity was localized in vascular tissue and the midribs of old leaves. These results indicate that DUR3 contributes to nitrogen translocation and rice yield under nitrogen-deficient and field conditions.
Effects of Bi doping in PbTe liquid-phase epitaxial layers grown by the temperature difference method under controlled vapor pressure (TDM-CVP) are investigated. For Bi concentrations in the solution, x Bi , lower than 0.2 at.%, an excess deep-donor level (activation energy E d Ϸ 0.03-0.04 eV) appears, and Hall mobility is low. In contrast, for x Bi Ͼ 0.2 at.%, Hall mobility becomes very high, while carrier concentration is in the range of 10 17 cm Ϫ3 . Inductive coupled plasma (ICP) emission analysis shows that, for x Bi ϭ 1 at.%, Bi concentration in the epitaxial layer is as high as N Bi ϭ 2.3-2.7 ϫ 10 19 cm Ϫ3 . These results indicate that Bi behaves not only as a donor but also as an acceptor, and the nearest neighbor or very near donor-acceptor (D-A) pairs are formed, so that strong self-compensation of Bi takes place. Carrier concentration for highly Bidoped layers shows a minimum at a Te vapor pressure of 2.2 ϫ 10 Ϫ5 torr for growth temperature 470ºC, which is coincident with that of the undoped PbTe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.