We propose and demonstrate the use of subharmonically synchronized laser pulses for low-noise lock-in detection in stimulated Raman scattering (SRS) microscopy. In the experiment, Yb-fiber laser pulses at a repetition rate of 38 MHz are successfully synchronized to Ti:sapphire laser pulses at a repetition rate of 76 MHz with a jitter of <8 fs by a two-photon detector and an intra-cavity electro-optic modulator. By using these pulses, high-frequency lock-in detection of SRS signal is accomplished without high-speed optical modulation. The noise level of the lock-in signal is found to be higher than the shot noise limit only by 1.6 dB. We also demonstrate high-contrast, 3D imaging of unlabeled living cells.
We demonstrate a technique of hyperspectral imaging in stimulated Raman scattering (SRS) microscopy using a tunable optical filter, whose transmission wavelength can be varied quickly by a galvanometer mirror. Experimentally, broadband Yb fiber laser pulses are synchronized with picosecond Ti:sapphire pulses, and then spectrally filtered out by the filter. After amplification by fiber amplifiers, we obtain narrowband pulses with a spectral width of <3.3 cm(-1) and a wavelength tunability of >225 cm(-1). By using these pulses, we accomplish SRS imaging of polymer beads with spectral information.
We have been developing an implantable left ventricular assist system (T-ILVAS) featuring a magnetically suspended centrifugal pump (MSCP) since 1995. In vitro and in vivo studies using a prototype MSCP composed of a polycarbonate housing and impeller (196 ml) have demonstrated long-term durability and excellent blood compatibility for up to 864 days, and excellent stability of the magnetic bearing of the MSCP. These preliminary results strongly suggested that the magnetic bearing of the MSCP is reliable and is a most feasible mechanism for a long-term circulatory assist device. We have recently devised a clinical version pump made of titanium (180 ml) with a new position sensor mechanism and a wearable controller with batteries. Cadaver fit study confirmed that the Type IV pump could be implanted in a small patient with a body surface area as small as 1.3. The in vitro performance tests of the Type IV pump demonstrated excellent hydrodynamic performances with an acceptable hemolysis rate. New position sensors for the titanium housing showed more uniform sensor outputs of a magnetic bearing than in the prototype polycarbonate pump. The Type IV pump then was evaluated in vivo in 6 sheep at the Oxford Heart Centre. Four sheep were electively sacrificed at 3 months and were allowed to survive for more than 6 months for long-term evaluation. In this particular series of experiments, no anticoagulant/antiplatelet regimen was utilized except for a bolus dose of heparin during surgery. There was a left ventricular mural thrombi around the inflow cannula in 1 sheep. Otherwise, there was no mechanical failure nor sign of thromboembolism throughout the study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.