Recent studies from several laboratories have shown perturbations of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] metabolism in hypertension. While these perturbations may exert their effect on blood pressure via their actions on calcium metabolism, it is possible that this vitamin D metabolite may have direct effects on vascular smooth muscle cell (VSMC) physiology. To examine this, we studied the effect of 1,25(OH)2D3 on VSMC growth and found that this substance suppressed VSMC [3H]thymidine uptake; furthermore, this vitamin D metabolite also suppressed the stimulatory effect of epidermal growth factor (EGF) on VSMC proliferation. The concomitant presence of this substance appeared to be required for its action on VSMC growth since cells pretreated with the vitamin D metabolite for up to 72 hours and then washed of the substance grew normally and responded to EGF. Studies were also done to determine if 1,25(OH)2D3 had any effect on the function of EGF receptors on VSMC. Experiments using Iodine-125-labeled EGF showed no differences in the binding of this ligand to VSMC, either untreated or treated with 1,25(OH)2D3, which indicates the effect of the vitamin D metabolite on VSMC growth (when exposed to EGF) was not mediated by an alteration of EGF receptor function. The results of these studies have implications for the pathogenesis of vascular diseases such as hypertension and atherosclerosis.
The authors attempt to establish the relative biological effectiveness (RBE) calculation for designing therapeutic proton beams on the basis of microdosimetry. The tissue-equivalent proportional counter (TEPC) was used to measure microdosimetric lineal energy spectra for proton beams at various depths in a water phantom. An RBE-weighted absorbed dose is defined as an absorbed dose multiplied by an RBE for cell death of human salivary gland (HSG) tumor cells in this study. The RBE values were calculated by a modified microdosimetric kinetic model using the biological parameters for HSG tumor cells. The calculated RBE distributions showed a gradual increase to about 1cm short of a beam range and a steep increase around the beam range for both the mono-energetic and spread-out Bragg peak (SOBP) proton beams. The calculated RBE values were partially compared with a biological experiment in which the HSG tumor cells were irradiated by the SOBP beam except around the distal end. The RBE-weighted absorbed dose distribution for the SOBP beam was derived from the measured spectra for the mono-energetic beam by a mixing calculation, and it was confirmed that it agreed well with that directly derived from the microdosimetric spectra measured in the SOBP beam. The absorbed dose distributions to planarize the RBE-weighted absorbed dose were calculated in consideration of the RBE dependence on the prescribed absorbed dose and cellular radio-sensitivity. The results show that the microdosimetric measurement for the mono-energetic proton beam is also useful for designing RBE-weighted absorbed dose distributions for range-modulated proton beams.
The amplification of distinct neural stem/progenitor cell subtypes during embryogenesis is essential for the intricate brain structures present in various vertebrate species. For example, in both mammals and birds, proliferative neuronal progenitors transiently appear on the basal side of the ventricular zone of the telencephalon (basal progenitors), where they contribute to the enlargement of the neocortex and its homologous structures. In placental mammals, this proliferative cell population can be subdivided into several groups that include Tbr2+ intermediate progenitors and basal radial glial cells (bRGs). Here, we report that basal progenitors in the developing avian pallium show unique morphological and molecular characteristics that resemble the characteristics of bRGs, a progenitor population that is abundant in gyrencephalic mammalian neocortex. Manipulation of LGN (Leu-Gly-Asn repeat-enriched protein) and Cdk4/cyclin D1, both essential regulators of neural progenitor dynamics, revealed that basal progenitors and Tbr2+ cells are distinct cell lineages in the developing avian telencephalon. Furthermore, we identified a small population of subapical mitotic cells in the developing brains of a wide variety of amniotes and amphibians. Our results suggest that unique progenitor subtypes are amplified in mammalian and avian lineages by modifying common mechanisms of neural stem/progenitor regulation during amniote brain evolution.
The authors experimentally obtained absorbed doses, dose-averaged quality factors, and dose equivalents in water phantom outside of the irradiation field in passive carbon-ion and proton radiotherapies with TEPC. These data are very useful for estimating the risk of secondary cancer after receiving passive radiotherapies and for verifying Monte Carlo calculations.
Highly ordered brain architectures in vertebrates consist of multiple neuron subtypes with specific neuronal connections. However, the origin of and evolutionary changes in neuron specification mechanisms remain unclear. Here, we report that regulatory mechanisms of neuron subtype specification are divergent in developing amniote brains. In the mammalian neocortex, the transcription factors (TFs) Ctip2 and Satb2 are differentially expressed in layer-specific neurons. In contrast, these TFs are co-localized in reptilian and avian dorsal pallial neurons. Multi-potential progenitors that produce distinct neuronal subtypes commonly exist in the reptilian and avian dorsal pallium, whereas a cis-regulatory element of avian Ctip2 exhibits attenuated transcription suppressive activity. Furthermore, the neuronal subtypes distinguished by these TFs are not tightly associated with conserved neuronal connections among amniotes. Our findings reveal the evolutionary plasticity of regulatory gene functions that contribute to species differences in neuronal heterogeneity and connectivity in developing amniote brains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.