Purpose Biallelic pathogenic variants in ABCA4 are the commonest cause of monogenic retinal disease. The full-field electroretinogram (ERG) quantifies severity of retinal dysfunction. We explored application of machine learning in ERG interpretation and in genotype–phenotype correlations. Methods International standard ERGs in 597 cases of ABCA4 retinopathy were classified into three functional phenotypes by human experts: macular dysfunction alone (group 1), or with additional generalized cone dysfunction (group 2), or both cone and rod dysfunction (group 3). Algorithms were developed for automatic selection and measurement of ERG components and for classification of ERG phenotype. Elastic-net regression was used to quantify severity of specific ABCA4 variants based on effect on retinal function. Results Of the cohort, 57.6%, 7.4%, and 35.0% fell into groups 1, 2, and 3 respectively. Compared with human experts, automated classification showed overall accuracy of 91.8% (SE, 0.169), and 96.7%, 39.3%, and 93.8% for groups 1, 2, and 3. When groups 2 and 3 were combined, the average holdout group accuracy was 93.6% (SE, 0.142). A regression model yielded phenotypic severity scores for the 47 commonest ABCA4 variants. Conclusions This study quantifies prevalence of phenotypic groups based on retinal function in a uniquely large single-center cohort of patients with electrophysiologically characterized ABCA4 retinopathy and shows applicability of machine learning. Novel regression-based analyses of ABCA4 variant severity could identify individuals predisposed to severe disease. Translational Relevance Machine learning can yield meaningful classifications of ERG data, and data-driven scoring of genetic variants can identify patients likely to benefit most from future therapies.
Pharmacokinetic (PK) predictions of new chemical entities are aided by prior knowledge from other compounds. The development of robust algorithms that improve preclinical and clinical phases of drug development remains constrained by the need to search, curate and standardise PK information across the constantly-growing scientific literature. The lack of centralised, up-to-date and comprehensive repositories of PK data represents a significant limitation in the drug development pipeline.In this work, we propose a machine learning approach to automatically identify and characterise scientific publications reporting PK parameters from in vivo data, providing a centralised repository of PK literature. A dataset of 4,792 PubMed publications was labelled by field experts depending on whether in vivo PK parameters were estimated in the study. Different classification pipelines were compared using a bootstrap approach and the best-performing architecture was used to develop a comprehensive and automatically-updated repository of PK publications. The best-performing architecture encoded documents using unigram features and mean pooling of BioBERT embeddings obtaining an F1 score of 83.8% on the test set. The pipeline retrieved over 121K PubMed publications in which in vivo PK parameters were estimated and it was scheduled to perform weekly updates on newly published articles. All the relevant documents were released through a publicly available web interface (https://app.pkpdai.com) and characterised by the drugs, species and conditions mentioned in the abstract, to facilitate the subsequent search of relevant PK data. This automated, open-access repository can be used to accelerate the search and comparison of PK results, curate ADME datasets, and facilitate subsequent text mining tasks in the PK domain.
Recent studies have found that oxygen saturation (SpO 2 ) variability analysis has potential for noninvasive assessment of the functional connectivity of cardiorespiratory control systems during hypoxia. Patients with sepsis have suboptimal tissue oxygenation and impaired organ system connectivity. Our objective with this report was to highlight the potential use for SpO 2 variability analysis in predicting intensive care survival in patients with sepsis. MIMIC-III clinical data of 164 adults meeting Sepsis-3 criteria and with 30 min of SpO 2 and respiratory rate data were analyzed. The complexity of SpO 2 signals was measured through AUTHORS' CONTRIBUTION Ali R. Mani, Watjana Lilaonitkul, and Margaret Gheorghita conceived the study and formulated the concept of oxygen saturation variability analysis in sepsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.