Perfluorinated acids, including perfluorinated carboxylates (PFCAs), and perfluorinated sulfonates (PFASs), are environmentally persistent and have been detected in a variety of wildlife across the globe. The most commonly detected PFAS, perfluorooctane sulfonate (PFOS), has been classified as a persistent and bioaccumulative substance. Similarities in chemical structure and environmental behavior of PFOS and the PFCAs that have been detected in wildlife have generated concerns about the bioaccumulation potential of PFCAs. Differences between partitioning behavior of perfluorinated acids and persistent lipophilic compounds complicate the understanding of PFCA bioaccumulation and the subsequent classification of the bioaccumulation potential of PFCAs according to existing regulatory criteria. Based on available research on the bioaccumulation of perfluorinated acids, five key points are highlighted in this review: (1) bioconcentration and bioaccumulation of perfluorinated acids are directly related to the length of each compound's fluorinated carbon chain; (2) PFASs are more bioaccumulative than PFCAs of the same fluorinated carbon chain length; (3) PFCAs with seven fluorinated carbons or less (perfluorooctanoate (PFO) and shorter PFCAs) are not considered bioaccumulative according to the range of promulgated bioaccumulation,"B", regulatory criteria of 1000-5000 L/kg; (4) PFCAs with seven fluorinated carbons or less have low biomagnification potential in food webs, and (5) more research is necessary to fully characterize the bioaccumulation potential of PFCAs with longer fluorinated carbon chains (>7 fluorinated carbons), as PFCAs with longer fluorinated carbon chains may exhibit partitioning behavior similar to or greater than PFOS. The bioaccumulation potential of perfluorinated acids with seven fluorinated carbons or less appears to be several orders of magnitude lower than "legacy" persistent lipophilic compounds classified as bioaccumulative. Thus, although many PFCAs are environmentally persistent and can be present at detectable concentrations in wildlife, it is clear that PFCAs with seven fluorinated carbons or less (including PFO) are not bioaccumulative according to regulatory criteria.
Scientists from academia, industry, and government reviewed current international regulations for the screening of commercial chemicals for bioaccumulation in the context of the current state of bioaccumulation science. On the basis of this review, several recommendations were proposed, including a scientific definition for "bioaccumulative substances," improved criteria for the characterization of bioaccumulative substances (including the trophic magnification factor and the biomagnification factor), novel methods for measuring and calculating bioaccumulation properties, and a framework for screening commercial chemicals for bioaccumulative substances. The proposed framework for bioaccumulation screening improves current practices by reducing miscategorization, making more effective use of available bioaccumulation data that currently cannot be considered, reducing the need for animal testing, providing simpler and cheaper test protocols for animal studies in case animal studies are necessary, making use of alternative testing strategies, including in vitro and in silico metabolic transformation assays, and providing a scientific foundation for bioaccumulation screening that can act to harmonize bioaccumulation screening among various jurisdictions.
The concentrations and removals of 16 fragrance materials (EMs) were measured in 17 U.S. and European wastewater treatment plants between 1997 and 2000 and were compared to predicted values. The average FM profile and concentrations in U.S. and European influent were similar. The average FM profile in primary effluent was similar to the average influent profile; however, the concentration of FMs was reduced by 14.6-50.6% in primary effluent. The average FM profile in final effluent was significantly different from the primary effluent profile and was a function of the design of the wastewater treatment plant. In general, the removal of sorptive, nonbiodegradable FMs was correlated with the removal of total suspended solids in the plant, while the removal of nonsorptive, biodegradable FMs was correlated with 5-day Biological Oxidation Demand removal in the plant. The overall plant removal (primary + secondary treatment) of FMs ranged from 87.8 to 99.9% for activated sludge plants, 58.6-99.8% for carousel plants, 88.9-99.9% for oxidation ditch plants, 71.3-98.6% for trickling filter plants, 80.8-99.9% for a rotating biological contactor plant, and 96.7-99.9% for lagoons. The average concentration of FMs in final effluent ranged from the limit of quantitation (1-3 ng/L) to 8 microg/L. Measured FM removal and concentrations were compared to predicted values, which were based on industry volume, per capita water use, octanol-water partition coefficient, and biodegradability.
For aquatic toxicants that act by so-called nonpolar narcosis, it is generally acknowledged that the Critical Body Residue (CBR) at death, as a surrogate dose metric for the amount of target that has interacted with the toxicant, is constant. This constancy is not only maintained across exposure times but also across different (narcosis) compounds as well as species. We present here an alternative model, applicable to reactive and receptormediated toxicants, that implies that for these compounds there is no constant CBR. The model also shows that for each single species-compound combination, the Critical Area Under the Curve (CAUC) is constant and independent of exposure time. These findings can have profound consequences for the interpretation of experimental toxicity data (such as 96 h LC 50 values) in risk assessment. Among other things, it shows us that for compounds other than nonpolar narcotics, LC 50 vs time values may decrease significantly even after bioconcentration steady state has been achieved. Consequently, it also shows us that the incipient LC 50 will be severely overestimated (i.e. toxicity underestimated) when using the familiar models based on just bioaccumulation kinetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.