Several studies have demonstrated that noise exposure may result in local vasoconstriction of cochlear vessels. The subsequent decrease in cochlear blood flow may lead to hypoxia and predispose to the formation of free oxygen radicals (FORs). If hypoxia occurs in response to noise exposure, then drugs that scavenge or block the formation of FORs should protect the cochlea from damage resulting from hypoxic or ischemic events as well as noise trauma. Rats were exposed to 60 hours of continuous broad-band noise (90 dB SPL) and treated with superoxide dismutase-polyethylene glycol (SOD-PEG), allopurinol, or a control vehicle. Exposure to noise resulted in significant threshold shifts at each frequency tested (3, 8, 12, and 18 kHz) as measured by tone burst-evoked compound action potentials and cochlear microphonics recorded from the round window. Both of these thresholds in drug-treated animals were attenuated compared with animals exposed to noise alone. These findings show that SOD-PEG and allopurinol may preserve cochlear sensitivity associated with noise exposure. This suggests that noise-induced damage to the cochlea may be related to the activity of FORs.
Labyrinthine function is tightly coupled to proper homeostasis. This includes appropriate blood flow that is under strict autoregulatory control. Perturbations in labyrinthine microcirculation can lead to significant cochlear and vestibular dysfunction. The etiology of many otologic disorders, including sudden sensorineural hearing loss, presbyacusis, noise-induced hearing loss, and certain vestibulopathies, are suspected of being related to alterations in blood flow. Some of the mechanisms responsible for hypoperfusion and possibly ischemia, within the cochlea, are addressed, with emphasis on the possibility that both noise and age contribute to localized low blood-flow states and stasis. This reduction in blood supply to the cochlea is likely, in part, responsible for reduced auditory sensitivity associated with chronic noise exposure and aging.
These experiments support our hypothesis and provide evidence that lecithin may preserve cochlear mitochondrial function and protect hearing loss associated with aging.
Age-related hearing loss, known as presbyacusis, is characterized by the progressive deterioration of auditory sensitivity associated with the aging process and is the leading cause of adult auditory deficiency in the USA. Presbyacusis is described as a progressive, bilateral, high-frequency hearing loss that is manifested on audiometric assessment by a moderately sloping pure tone audiogram. Approximately 23% of the population between 65 and 75 years of age, and 40% of the population older than 75 years of age are affected by this condition. It was estimated in 1980 that 11% of the population was 76 years or older and this number is expected to almost double by the year 2030. When one considers that the population over 65 years of age is experiencing the most accelerated development of hearing loss, the potential socioeconomic ramifications are staggering. Curiously, the frequency of presbyacusis varies across different societies. This discrepancy has been attributed to many factors including genetics, diet, socioeconomic factors, and environmental variables. The purpose of this article is to review the various molecular mechanisms underlying presbyacusis and to offer insights into potential methods of mitigating the effects of aging on hearing impairment Key words: aging, mitochondrial DNA mutations, presbyacusis, reactive oxygen species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.