Background The preventive and therapeutic medical utilization of this plant is an age-long practice across the globe. This study aimed to validate the impact of dark purple blossoms of basil (Ocimum basilicum L.) aqueous extract at low temperature (0 °C) mediated mitochondrial fission contributed to induced apoptosis in human breast cancer cells. Methods Fresh blossoms were extracted at low temperature (0 °C) using a watery solvent. Human MCF7 breast cancer cells were then treated with 3 separate fluctuated concentrations of 0, 50, 150 and 250 µg/mL for 24 and 48 h. Results The outcomes demonstrated the presence of anthocyanins, anthraquinones, tannins, reducing sugars, glycosides, proteins, amino acids, flavonoids and volatile oils and nonappearance of Terpinoids and alkaloids. Contrastingly, frail presence of steroids in basil blossoms aqueous concentrate was noted. In addition, the results from a phytochemical subjective examination of basil (Ocimum basilicum L.) blossoms aqueous extract demonstrated that most of the credited natural impacts containing more remarkable contents of antioxidants and anticancer compounds in basil blossoms aqueous extract. Moreover, the restraint of glucose take-up was alleviated mediated by a dose-dependent manner in MCF7 cells with basil (Ocimum basilicum L.) blossoms aqueous extract inducted for 24 h, resulting in mitochondrial fission. Conclusion This is the first study that shows the impact of the aqueous extract of basil (Ocimum basilicum L.) blossoms was extracted at low temperature (0℃/6 h) underlined high amounts of flavonoids and phenolic compounds bearing more anticancer and antioxidant activities compared to another aqueous extract (using boiled water solvent) and alcoholic extracts.
The present study investigates the protective efficacy of stem bromelain against lead-induced toxicity in male Wistar rats. There were six experimental groups; Group I was negative control, Group II was administered only 20 mg/kg of stem bromelain. Group III and V were orally exposed to 30 mg/kg/day and 60 mg/kg/day of lead acetate, respectively. Group IV and Group VI were exposed to both low and high dose of lead acetate, respectively, and treated with 20 mg/kg stem bromelain. The experimental period was 21 days. The end points evaluated were, lead accumulation in kidney, liver and spleen, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity, serum malonaldehyde (MDA) cholesterol and triglycerides levels. Co-administration of stem bromelain with lead markedly reduced the lead accumulation in the kidney and spleen. The treatment of stem bromelain also reduced the serum MDA levels in the group exposed to lower dose of lead and serum triglyceride level in the group exposed to higher dose of lead. The lead-induced modulated levels of serum ALT and AST were also alleviated by bromelain treatment. Our key findings suggest a chelating potential of stem bromelain for combating lead toxicity and oxidative stress. Bromelain represents a novel approach to the treatment of metal toxicity and metabolic disorders with a limited therapeutic window.
Objective: Marjoram plants have varied pharmacological properties because they contain antioxidants. In the present study, the effect of Origanum majorana, gathered from Abha, Saudi Arabia, was evaluated on the growth of MCF7 breast cancer cells. Methods: Fresh aerial parts from Origanum majorana were extracted at a low temperature (0 O C/6 hours). MCF7 human breast cancer cells were then treated with 4 separate fluctuated concentrations of 0, 50, 150, 200 and 350 µg/mL for 24 and 48 hours. Results: The findings showed that Origanum majorana aqueous extract contained absolute phenolic content (TPC) of 58.24 mg equivalent/g DW, and the complete flavonoid content (TFC) of 35.31 mg GAE equivalent/g DW. The endurance of MCF7 cells after incubation with aqueous extract diminished, indicating that Origanum majorana is tumour cell selective. Origanum majorana extract increased the mRNA expression of apoptotic genes in MCF7. The majorana aqueous extract expanded the activity of Caspase-7 action specifically at higher concentrations of 150, 200, and 350 µg/ml. Our findings indicate that Origanum majorana could induce apoptosis of human breast cancer cells. Conclusion: The aqueous Origanum majorana extracted at low temperature (0 °C/6 hours) can be as a anti-cancer treatment agent if further studies wanrents support our result.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.