Background
The preventive and therapeutic medical utilization of this plant is an age-long practice across the globe. This study aimed to validate the impact of dark purple blossoms of basil (Ocimum basilicum L.) aqueous extract at low temperature (0 °C) mediated mitochondrial fission contributed to induced apoptosis in human breast cancer cells.
Methods
Fresh blossoms were extracted at low temperature (0 °C) using a watery solvent. Human MCF7 breast cancer cells were then treated with 3 separate fluctuated concentrations of 0, 50, 150 and 250 µg/mL for 24 and 48 h.
Results
The outcomes demonstrated the presence of anthocyanins, anthraquinones, tannins, reducing sugars, glycosides, proteins, amino acids, flavonoids and volatile oils and nonappearance of Terpinoids and alkaloids. Contrastingly, frail presence of steroids in basil blossoms aqueous concentrate was noted. In addition, the results from a phytochemical subjective examination of basil (Ocimum basilicum L.) blossoms aqueous extract demonstrated that most of the credited natural impacts containing more remarkable contents of antioxidants and anticancer compounds in basil blossoms aqueous extract. Moreover, the restraint of glucose take-up was alleviated mediated by a dose-dependent manner in MCF7 cells with basil (Ocimum basilicum L.) blossoms aqueous extract inducted for 24 h, resulting in mitochondrial fission.
Conclusion
This is the first study that shows the impact of the aqueous extract of basil (Ocimum basilicum L.) blossoms was extracted at low temperature (0℃/6 h) underlined high amounts of flavonoids and phenolic compounds bearing more anticancer and antioxidant activities compared to another aqueous extract (using boiled water solvent) and alcoholic extracts.
Antimalarial drug resistance is the main therapeutic challenge to the control of the disease, making the search for new compounds as alternative treatments of central importance. Propolis has a long history of medicinal use due to its antifungal, antibacterial and antiprotozoal properties. The present study therefore aimed to evaluate the antimalarial activity of the Saudi propolis methanolic extract against Plasmodium chabaudi infection in mice. To this end, albino mice were divided into five groups: the first group was the normal control; the second, third, fourth and fifth groups were infected intraperitoneally with 10 P. chabaudi-parasitized erythrocytes. The last three groups of mice were gavaged with 100 μl of propolis extract (PE) at a dose of 25, 50 and 100 mg PE/kg, respectively, once daily for 7 days. PE significantly suppressed the parasitaemia and showed significant efficacy in ameliorating anaemic conditions in P. chabaudi-infected mice in a dose-dependent manner. Histological investigation of the spleen tissue of treated and untreated mice further supports the antimalarial potential of PE. In addition, our study proved that Saudi PE reduced oxidative damage by decreasing the malondialdehyde (MDA) and increasing the catalase (CAT) activity and the glutathione (GSH) levels. Also, Saudi PE increased the level of some pro-inflammatory cytokines such as IFN-γ, TNF-α, GM-CSF and G-CSF, with the most effective dose being 100 mg PE/kg. In conclusion, PE showed antimalarial and antioxidant activities and provided protection against spleen tissue damage in P. chabaudi-infected mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.