Anode biofilm is a crucial component in microbial fuel cells (MFCs) for electrogenesis. Better knowledge about the biofilm development process on electrode surface is believed to improve MFC performance. In this study, double-chamber microbial fuel cell was operated with diluted POME (initial COD = 1,000 mg L(-1)) and polyacrylonitrile carbon felt was used as electrode. The maximum power density, COD removal efficiency and Coulombic efficiency were found as 22 mW m(-2), 70 and 24 %, respectively. FTIR and TGA analysis confirmed the formation of biofilm on the electrode surface during MFC operation. The impact of anode biofilm on anodic polarization resistance was investigated using electrochemical impedance spectroscopy (EIS) and microbial community changes during MFC operation using denaturing gradient gel electrophoresis (DGGE). The EIS-simulated results showed the reduction of charge transfer resistance (R ct) by 16.9 % after 14 days of operation of the cell, which confirms that the development of the microbial biofilm on the anode decreases the R ct and therefore improves power generation. DGGE analysis showed the variation in the biofilm composition during the biofilm growth until it forms an initial stable microbial community, thereafter the change in the diversity would be less. The power density showed was directly dependent on the biofilm development and increased significantly during the initial biofilm development period. Furthermore, DGGE patterns obtained from 7th and 14th day suggest the presence of less diversity and probable functional redundancy within the anodic communities possibly responsible for the stable MFC performance in changing environmental conditions.
Globally, despite the intense agricultural production, the output is expected to be limited by emerging infectious plant diseases and adverse impacts of climate change. The annual increase in agricultural output to sustain the human population at the expense of the environment has exacerbated the current climate conditions and threatened food security. The demand for sustainable agricultural practice is further augmented with the exclusion of synthetic fertilizers and pesticides. Therefore, the application of plant microbiome engineering and (natural) biostimulants has been at the forefront as an environment-friendly approach to enhance crop production and increase crop tolerance to adverse environmental conditions. In this article, we explore the application of microbiome engineering and plant biostimulants as a sustainable approach to mitigating biotic and abiotic stresses and improving nutrient use efficiency to promote plant growth and increase crop yield. The advancement/understanding in plant-biostimulant interaction relies on the current scientific research to elucidate the extent of benefits conferred by these biostimulants under adverse conditions.
A novel actinobacterial strain, designated K81G1T, was isolated from a soil sample collected in Kantulee peat swamp forest, Surat Thani Province, Thailand, and its taxonomic position was determined using a polyphasic approach. Optimal growth of strain K81G1T occurred at 28–30 °C, at pH 5.0–6.0 and without NaCl. Strain K81G1T had cell-wall chemotype IV (meso-diaminopimelic acid as the diagnostic diamino acid, and arabinose and galactose as diagnostic sugars) and phospholipid pattern type II, characteristic of the genus Amycolatopsis . It contained MK-9(H4) as the predominant menaquinone, iso-C16 : 0, C17 : 0 cyclo and C16 : 0 as the major cellular fatty acids, and phospholipids consisting of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, hydroxyphosphatidylethanolamine, phosphatidylinositol and two unidentified phospholipids. Based on 16S rRNA gene sequence similarity and phylogenetic analyses, strain K81G1T was most closely related to Amycolatopsis rhizosphaerae TBRC 6029T (97.8 % similarity), Amycolatopsis acidiphila JCM 30562T (97.8 %) and Amycolatopsis bartoniae DSM 45807T (97.6 %). Strain K81G1T exhibited low average nucleotide identity and digital DNA–DNA hybridization values with A. rhizosphaerae TBRC 6029T (76.4 %, 23.0 %), A. acidiphila JCM 30562T (77.9 %, 24.6 %) and A. bartoniae DSM 45807T (77.8 %, 24.3 %). The DNA G+C content of strain K81G1T was 69.7 mol%. Based on data from this polyphasic study, strain K81G1T represents a novel species of the genus Amycolatopsis , for which the name Amycolatopsis acidicola sp. nov. is proposed. The type strain is K81G1T (=TBRC 10047T=NBRC 113896T).
Drought stress severely threatens plant growth, yield and survivability. Wood vinegar, formed by the condensation of smoke produced during biochar production, has been shown to promote plant growth and enhance stress tolerance. They have now been recognized as a sustainable alternative and are frequently used exogenously to support plants coping with environmental stress. This study aimed to evaluate the efficacy of oil palm wood vinegar (OPWV) in mitigating the adverse effects of drought stress on Pandanus amaryllifolius. The optimal concentrations and frequencies of OPWV application were determined before the drought treatment. The results showed that the imposed drought stress negatively affected the plant growth parameters but applying OPWV at 1:500 dilution at 3-day intervals for 12 days increased its tolerance. These include increased leaf relative water content, root-to-shoot ratio, relative stem circumference, chlorophyll pigments and antioxidant enzyme activities. In contrast, the drought-stressed plants treated with OPWV showed decreased relative electrolyte leakage, hydrogen peroxide, proline, malondialdehyde, and enhanced drought-responsive gene expressions, such as HSP70, GAPDH, and Thau, while ENO and β-Fruc were reduced. These biostimulatory effects of OPWV might be due to several antioxidant compounds, such as anthranilic acid, tetrasiloxane, syringol, guaiacol, and catechol. Altogether, our results showed the effectiveness of OPWV in alleviating the adverse effects of drought stress, and as such, OPWV could be potentially applied in agriculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.