SummaryAdipose-derived stem/stromal cells (ASCs) from the anatomically distinct subcutaneous and visceral depots of white adipose tissue (WAT) differ in their inherent properties. However, little is known about the molecular identity and definitive markers of ASCs from these depots. In this study, ASCs from subcutaneous fat (SC-ASCs) and visceral fat (VS-ASCs) of omental region were isolated and studied. High-content image screening of over 240 cell-surface markers identified several potential depot-specific markers of ASCs. Subsequent studies revealed consistent predominant expression of CD10 in SC-ASCs and CD200 in VS-ASCs across 12 human subjects and in mice. CD10-high-expressing cells sorted from SC-ASCs differentiated better than their CD10-low-expressing counterparts, whereas CD200-low VS-ASCs differentiated better than CD200-high VS-ASCs. The expression of CD10 and CD200 is thus depot-dependent and associates with adipogenic capacities. These markers will offer a valuable tool for tracking and screening of depot-specific stem cell populations.
Cyclic 3'5'AMP (cAMP) is an important physiological amplifier of glucose-induced insulin secretion by the pancreatic islet beta-cell, where it is formed by the activity of adenylyl cyclases, which are stimulated by glucose, through elevation in intracellular calcium concentrations, and by the incretin hormones (GLP-1 and GIP). cAMP is rapidly degraded in the pancreatic islet beta-cell by various cyclic nucleotide phosphodiesterase (PDE) enzymes. Many steps involved in glucose-induced insulin secretion are modulated by cAMP, which is also important in regulating pancreatic islet beta-cell differentiation, growth and survival. This chapter discusses the formation, destruction and actions of cAMP in the islets with particular emphasis on the beta-cell.
Adipose-derived stem cells (ASCs) are considered a great alternative source of mesenchymal stem cells (MSCs). Unlike bone marrow stem cells (BMSCs), ASCs can be retrieved in high numbers from lipoaspirate, a by-product of liposuction procedures. Given that ASCs represent an easily accessible and abundant source of multipotent cells, ASCs have garnered attention and curiosity from both scientific and clinical communities for their potential in clinical applications. Furthermore, their unique immunobiology and secretome are attractive therapeutic properties. A decade since the discovery of a stem cell reservoir residing within adipose tissue, ASC-based clinical trials have grown over the years around the world along with assessments made on their safety and efficacy. With the progress of ASCs into clinical applications, the aim towards producing clinical-grade ASCs becomes increasingly important. Several countries have recognised the growing industry of cell therapies and have developed regulatory frameworks to assure their safety. With more research efforts made to understand their effects in both scientific and clinical settings, ASCs hold great promise as a future therapeutic strategy in treating a wide variety of diseases. Therefore, this review seeks to highlight the clinical applicability of ASCs as well as their progress in clinical trials across various medical disciplines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.