Serious games have become an important genre of digital media and are often acclaimed for their potential to enhance deeper learning because of their unique technological properties. Yet the discourse has largely remained at a conceptual level. For an empirical evaluation of educational games, extra effort is needed to separate intertwined and confounding factors in order to manipulate and thus attribute the outcome to one property independent of another. This study represents one of the first attempts to empirically test the educational impact of two important properties of serious games, multimodality and interactivity, through a partial 2 x 3 (interactive, noninteractive by high, moderate, low in multimodality) factorial between-participants follow-up experiment. Results indicate that both multimodality and interactivity contribute to educational outcomes individually. Implications for educational strategies and future research directions are discussed.
No abstract
A low molecular weight inhibitor of TGF-beta 1 binding was detected in partially purified human platelet extracts by using Hep 3B hepatoma cells in the binding assays. The inhibitory protein was purified to homogeneity and was identified as platelet factor 4 on the basis of its amino acid sequence. TGF-beta 1 binding to Hep 3B cells was almost completely inhibited by 100 nM concentrations of platelet factor 4, but TGF-beta 1 binding to NRK 49F fibroblasts was inhibited only slightly. Affinity cross-linking experiments revealed that these differences in the inhibition of TGF-beta 1 binding by platelet factor 4 were due to differences in the complements of TGF-beta 1 binding proteins present on these two cell types. In Hep 3B cells the majority of bound TGF-beta 1 was cross-linked to a complex which had an apparent molecular weight of 70 kDa. TGF-beta 1 binding to this protein was the most sensitive to inhibition by platelet factor 4. Based on its size and TGF-beta 1 binding properties, we believe this protein is the type I TGF-beta 1 receptor. Hep 3B cells also had a high-affinity TGF-beta 1 binding protein which appeared as an 80 kDa complex, and which we believe to be the type II TGF-beta 1 receptor. TGF-beta 1 binding to this protein was not inhibited by platelet factor 4. TGF-beta 1 was also cross-linked to complexes of higher molecular weights in Hep 3B cells, but it was not clear whether any of them represented the type III TGF-beta 1 receptor. In NRK 49F cells, the majority of bound TGF-beta 1 was cross-linked to a high molecular weight complex which probably represented the type III TGF-beta 1 receptor. NRK 49F cells also had type I TGF-beta 1 receptors and platelet factor 4 inhibited binding to these receptors in the NRK cells. Since the type I receptor contributed only a small percentage of total TGF-beta 1 binding, however, the overall effects of platelet factor 4 on TGF-beta 1 binding to NRK 49F cells were negligible. We were unable to demonstrate specific or saturable binding of platelet factor 4 to Hep 3B cells using either direct binding or affinity cross-linking assays. Thus, it is not clear whether platelet factor 4 inhibits TGF-beta 1 binding by competition for binding to the type I receptor. Modest concentrations of TGF-beta 1 reduced the adherence of Hep 3B cells to tissue culture dishes.(ABSTRACT TRUNCATED AT 400 WORDS)
This paper describes an approach towards automating the identification of design problems with three-dimensional mediated or gaming environments through the capture and query of user-player behavior represented as a data schema that we have termed "immersidata". Analysis of data from a study of an educational computer game that we are developing shows that this approach is an effective way to pinpoint potential usability or design problems occurring in unfolding situational and episodic events that can interrupt or break user experience. As well as informing redesign, a key advantage of this cost-effective approach is that it considerably reduces the time evaluators spend analyzing hours of videoed study material. Categories INTRODUCTIONThe non-linear, continuous and real-time interactive nature of three-dimensional mediated or computer/digital gaming environments presents novel challenges to humancomputer interaction. As academia and research enthusiastically adopt and develop computer games for areas such as education, training and entertainment, the need for more considered design and evaluation methods becomes apparent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.