Because M. bovis otitis media is an economically important problem, there is a need to understand the pathogenesis of disease, not only to improve our understanding of the factors contributing to the development of this disease but also to inform the development of improved diagnostic tests and therapy. Oral ingestion of M. bovis-contaminated milk is linked, but not definitively proven, to development of otitis media. In the current study, we demonstrate that oral ingestion of M. bovis infected colostrum can result in an ascending infection and development of otitis media. Importantly, M. bovis was found to have a previously unrecognized tendency for colonization of the tonsils of calves, which most likely contributed to the subsequent development of otitis media. In contrast, transtracheal inoculation failed to produce clinically significant upper respiratory tract disease, although did induce lower respiratory tract disease. The upper respiratory tract was the major site of M. bovis-specific B cell and mucosal IgA responses in calves inoculated by the oral route. The oral inoculation route of infection presented here is particularly suited to the study of host-pathogen interactions during initial colonization of the tonsils, expansion of infection and dissemination to the lower respiratory tract and middle ear. In addition, it could be used to investigate potential new preventative or control strategies, especially those aimed at limiting colonization of the tonsils and/or spread to the middle ear.
Mycoplasma lipoproteins are recognized by Toll-like receptors (TLR), but TLRs' role in responses to infection are unknown. Mycoplasma pulmonis is a naturally occurring respiratory pathogen in mice. In the current study, we used TLR-transfected HEK cells and TLR2−/− bone marrow-derived dendritic cells to demonstrate TLR2-mediated events are important in the initial host-mycoplasma interactions promoting cytokine responses. As we found alveolar macrophages expressed TLR1, TLR2 and TLR6 mRNAs, a role for TLR2 in innate immune clearance in lungs was examined. Three days post-infection, TLR2−/− mice had higher M. pulmonis numbers in lungs, but not in nasal passages. However, TLR2−/− mice had higher lung cytokine levels, indicating TLR2-independent mechanisms are also involved in host responses. Thus, TLR2 plays a critical role in the ability of innate immunity to determine M. pulmonis numbers in the lung, and it is likely that early after respiratory infection that TLR2 recognition of M. pulmonis triggers initial cytokine responses of host cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.