The importance of programmed cell death (PCD) during vertebrate development has been well established. During the development of the nervous system in particular, neurotrophic cell death in innervating neurons matches the number of neurons to the size of their target field. However, PCD also occurs during earlier stages of neural development, within populations of proliferating neural precursors and newly postmitotic neuroblasts, all of which are not yet fully differentiated. This review addresses early neural PCD, which is distinct from neurotrophic death in differentiated neurons. Although early neural PCD is observed in a range of organisms, from Caenorhabditis elegans to mouse, the role and the regulation of early neural PCD are not well understood. The regulation of early neural PCD can be inferred from the function of factors such as bone morphogenetic proteins (BMPs), Wnts, fibroblast growth factors (FGFs), and Sonic Hedgehog (Shh), which regulate both early neural development and PCD occurring in other developmental processes. Cell number control, removal of damaged or misspecified cells (spatially or temporally), and selection are the proposed roles early neural PCDs play during neural development. Data from developmental PCD in C. elegans and Drosophila provide insights into the possible signaling pathways integrating PCD with other processes during early neural development and the roles they might play.
In vertebrates, little is known on the role of programmed cell death (PCD) occurring within the population of dividing neural precursors and newly formed neuroblasts during early neural development. During primary neurogenesis, PCD takes place within the neuroectoderm of Xenopus embryos in a reproducible stereotypic pattern, suggesting a role for PCD during the early development of the CNS. We find that the spatio-temporal pattern of PCD is unaffected in embryos in which cell proliferation has been blocked and whose neuroecotoderm contains half the normal number of cells. This shows that PCD is not dependent on cell division. It further suggests that PCD does not solely function to regulate absolute cell numbers within the neuroectoderm. We demonstrate that PCD can be reproducibly inhibited in vivo during primary neurogenesis by the overexpression of human Bcl-2. Following PCD inhibition, normal neurogenesis is disrupted, as seen by the expansion of the expression domains of XSox-2, XZicr-2, XNgnr-1, XMyT-1, and N-Tubulin, XNgnr-1 being the most affected. PCD inhibition, however, did not affect the outcome of lateral inhibition. We propose, then, that PCD regulates primary neurogenesis at the level of neuronal determination.
We used microarray hybridization to identify genes induced in the dermal papilla (DP) during anagen as a result of the interaction with epithelial matrix cells. We identified inhibitors of the bone morphogenetic protein (BMP) and transforming growth factor beta (TGFbeta)-signalling pathway, as well as the rat homologue of the Xenopus-secreted WNT modulator Wise. A large number of genes previously determined to be expressed in the DP were shown to be expressed in both the DP and dermal sheath (DS). Genes induced in the DP during anagen included modulators of genes expressed additionally in the DS as well as specialized extracellular matrix components. Expression of some of these genes were lost when the DP cells were cultured, suggesting that their expression was interaction dependent. One such gene, the WNT-signalling modulator Wise, was expressed in the DP and not in the non-inductive DS and was additionally expressed at high levels in the precortex and in the putative bulge region. In addition to the reported WNT-signalling modulation role, we show that Wise reduced both BMP and TGFbeta signalling in transformed fibroblasts. We speculate that loss of gene expression in cultured cells is a model for the loss of gene expression observed at catagen.
Early neural cell death is programmed cell death occurring within proliferating and undifferentiated neural progenitors. Little is known about the regulation and role of early neural cell death. In Xenopus embryos, primary neurogenesis is disrupted following the inhibition of early neural cell death, indicating that it is required for normal primary neurogenesis. Here we show that early neural cell death is dependent on primary neurogenesis. Overexpression of XSoxD concomitantly reduced N-Tubulin expression and early neural cell death, as seen by reduced TUNEL staining in stage 15 embryos. Conversely, overexpression of XNgnr1 led to ectopic N-Tubulin expression and TUNEL staining. However, XNeuroD overexpression, which induces ectopic N-Tubulin expression downstream of XNgnr1, had no effect on early neural cell death. E1A12S differentially inhibits the differentiation pathway induced by XNGNR1 protein. E1A12S-mediated inhibition of XNGNR1 neurogenic activity resulted in the reduction of N-Tubulin expression and TUNEL staining. Taken together, our data establish that primary neurogenesis induced by XNGNR1 promotes early neural cell death. This indicates that XNgnr1 positively regulates early neural cell death. We propose that early neural cell death might eliminate cells with abnormally high levels of XNGNR1, which can result in pre-mature neuronal differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.