Seaborne transport plays an important role in global transportation, and ships' emissions are worth considering. By applying life cycle assessment method, the environmental impacts of ships could be evaluated. Life cycle assessment is an effective tool as this method provides a holistic perspective of a product or a service in its life cycle. In an attempt to clarify emissions released from the cradle-to-gate life cycle of ships, especially from processes in shipbuilding which were not considered adequately from some previous studies, this study conducts life cycle assessment method to assess the environmental impacts of a Panamax bulk carrier from raw material extraction to shipbuilding phase. In order to clarify life cycle emissions, some helpful mathematical formulas are also established. Ten environmental categories of CML 2001 life cycle impact assessment methodology that are relevant to the marine context are chosen for evaluating the environmental impacts. To obtain emission inventory and impact assessment results, a life cycle assessment software-GaBihas been used. The results show that material extraction and production phase accounts for more than 85% carbon dioxide, carbon monoxide, nitrous oxide, and methane, while shipbuilding phase is responsible for 99.91% volatile organic compounds, 36.08% non-methane organic compounds, and 26.76% particulate matter emissions. In relation to environmental indicators, material consumption is much more significant than other processes and accounts for more than 86% of values of 10 environmental categories. This study is useful as it provides necessary information for life cycle assessment in the shipping industry in the future.
Life-cycle assessment has been widely applied in many industry sectors for years and there are some applications of this method in the shipping sector. Fuel consumption and material consumption are considered as crucial factors in the life cycle of ship. This study uses the life-cycle assessment method to show the effects of fuel consumption reduction and light displacement tonnage on the environmental performance of ships. This is done by comparing the environmental impacts of 25 investigated scenarios with different fuel consumption and light displacement tonnage. CML2001 methodology is used to evaluate the impact assessment and the results are calculated using GaBi software. The results show that fuel consumption reduction could cut down the environmental impacts. However, some scenarios are not environmentally beneficial due to the increase in light displacement tonnage. The effects of fuel consumption and light displacement tonnage on 12 CML2001 environmental indicators are different. It is recommended that the life-cycle assessment method should be used to fully assess the environmental impacts of ships before applying any techniques in order to achieve the environmental benefits.
With the quantitative analysis of pollution area mapping rules and business functions of the modular design by means of geographic information systems technology, computer software and other key technologies, this paper preliminary makes the overall framework of the standard drawing of electronic pollution area distribution mapping, and proposes to build the hardware and software operating platform, database structure design standards and form of generation of electronic pollution area mapping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.