Over the past several decades, evolution models for both the PSP and the SCS have been established reasonably. For example, the time of the NNW oriented seafloor spreading of the SCS along the South China Block was calibrated to begin at 33 Ma and cease at 15 Ma, respectively, during which the east subbasin (33-15 Ma) formed first and the southwest subbasin (23.6-16 Ma) formed later (
The impact of central Asian aridification on the low latitude North Pacific Ocean since the late Miocene remains unclear. To address this question, we systematically studied an abyssal manganese nodule from the northwestern Pacific Ocean, which is expected to be sensitive to eolian dust sourced from central Asia. Geochemical variations and the fossilized remains of magnetotactic bacteria within the studied nodule manifest two prominent Asian aridification events at ∼8–7 Ma and 3.6–0 Ma. These results suggest that central Asian aridification impacted both primary productivity and abyssal microbial activity in the NW Pacific Ocean via eolian dust inputs. In contrast to the Pliocene aridification event, the late Miocene event was associated with a primary productivity bloom that is not evident in coeval global primary productivity records, which indicates that the ∼8–7 Asian aridification event was likely due to NE Tibetan Plateau uplift rather than to global cooling.
Hematite concentration is an important climatic proxy for environmental (climatic) studies of soils and sediments. However, the accurate quantification of naturally occurring hematite has always been a difficult question, especially for those areas with lower hematite concentrations. Diffuse reflectance spectroscopy (DRS) is an effective method for hematite identification and quantification with lower detection limits. In this study, we synthesized a set of samples with well-determined concentrations to explore the exact detectable range of hematite and propose the most effective transfer function between the DRS proxy and hematite concentration. In addition, natural sediments from Inland Asia and the Western Pacific Ocean were used to further test the feasibility of the new transfer function. Results show that the lowest DRS detection limit for hematite could reach ~0.00078%, but is affected by the natural matrix. We also find that the second derivative of the Kubelka–Munk (K–M) function is monotonically correlated with the hematite concentration (0.00078%–100%), but ambiguities exist for the first derivative. Therefore, the second derivative of the K–M function is highly suggested for the hematite quantification, especially when concentration exhibits a wide range of variations. This study provides important references for the application of hematite proxy and promotes the popularization and development of the DRS method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.