IntroductionFrailty is a geriatric syndrome that has been defined differently with various indices. Without a uniform definition, it remains unclear how to interpret and compare different frailty indices (FIs). With the advances in index mining, we find it necessary to review the implicit assumptions about the creation of FIs. We are concerned the processing of frailty data may introduce measurement error and bias. We aim to review the assumptions, interpretability and predictive power of FIs regarding mortality.MethodsThree FIs, the Functional Domains Model proposed by Strawbridge et al. (1998), the Burden Model by Rockwood et al. (2007) and the Biologic Syndrome Model by Fried et al. (2004), were directly compared using the data from the Health and Retirement Study (HRS), a longitudinal study since 1996 mainly following up Americans aged 50 years and over. The FIs were reproduced according to Cigolle et al. (2009) and interpreted with their input variables through forward-stepwise regression. Biases were the residuals of the FIs that could not be explained by own input variables. Any four of the input variables were used to create alternative indices. Discrete-time survival analysis was conducted to compare the predictive power of FIs, input variables and alternative indices on mortality.ResultsWe found frailty a syndrome not unique to the elderly. The FIs were produced with different degrees of bias. The FIs could not be fully interpreted with the theory-based input variables. The bias induced by the Biological Syndrome Model better predicted mortality than frailty status. A complicated FI, the Burden Model, could be simplified. The input variables better predicted mortality than the FIs. The continuous FIs predicted mortality better than the frailty statuses. At least 6865 alternative indices better predicted mortality than the FIs.ConclusionFIs have been used as outcome in clinical trials and need to be reviewed for adequacy based on our findings. The three FIs are not closely linked to the theories because of bias introduced by data manipulation and excessive numbers of input variables. We are developing new algorithms to develop and validate innovative indices.
A phase transition between topologically distinct insulating phases involves closing and reopening the bandgap. Near the topological phase transition, the bulk energy spectrum is characterized by a massive Dirac dispersion, where the bandgap plays the role of mass. We report measurements of strain dependence of electrical transport properties of ZrTe5, which is known to host massive Dirac fermions in the bulk due to its proximity to a topological phase transition. We observe that the resistivity exhibits a pronounced minimum at a critical strain. We further find that the positive longitudinal magnetoconductance becomes maximal at the critical strain. This nonmonotonic strain dependence is consistent with the switching of sign of the Dirac mass and, hence, a strain-tuned topological phase transition in ZrTe5.
Osteosynthesis with cannulated screws fixation is a simple, safe, economical, and reasonably effective procedure for the treatment of undisplaced femoral neck fractures in patients older than 80 years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.