The aluminum-doped ZnO (AZO) nanostructures with different Al concentrations were synthesized on AZO/glass substrate via a simple hydrothermal growth method at a temperature as low as 85 degrees C. The morphologies, crystallinity, optical emission properties, and chemical bonding states of AZO nanostructures show evident dependence on the aluminum dosage. The morphologies of AZO nanostructures were changed from vertically aligned nanowires (NWs), and NWs coexisted with nanosheets (NSs), to complete NSs in respect of the Al-dosages of 0-3 at.%, 5 at.%, and 7 at.%, correspondingly. The undoped ZnO and lightly Al-doped AZO (< or = 3 at.%) NWs are single-crystalline wurtzite structure. In contrast, heavily Al-doped AZO sample is polycrystalline. The AZO nanostructure with 3 at.% Al-dosages reveals the optimal crystallinity and less structural defects, reflecting the longest carrier lifetime and highest conductivity. Consequently, the field-emission characteristics of such an AZO emitter can exhibit the higher current density, larger field-enhancement factor (beta) of 3131, lower turn-on field of 2.17 V/microm, and lower threshold field of 3.43 V/microm.
High-performance zinc oxide (ZnO) bottom-gate (BG) thin-film transistors (TFTs) with a single vertical grain boundary in the channel have been successfully fabricated by a novel low-temperature (i.e., 85 • C) hydrothermal method. The ZnO active channel was laterally grown with an aluminum-doped ZnO seed layer underneath the Ti/Pt film. Consequently, such BG-TFTs (W/L = 250 μm/10 μm) demonstrated the high fieldeffect mobility of 9.07 cm 2 /V · s, low threshold voltage of 2.25 V, high on/off-current ratio above 10 6 , superior current drivability, indistinct hysteresis phenomenon, and small standard deviations among devices, attributed to the high-quality ZnO channel with the single grain boundary.Index Terms-Hydrothermal method, lateral grain growth, thin-film transistor (TFT), zinc oxide (ZnO).
In this paper, high-performance Zinc oxide (ZnO) thin-film transistors (TFTs) with bottom-gate (BG) structure and artificially location-controlled lateral grain growth have been prepared by low-temperature hydrothermal method. As the proper design of source/drain structure of ZnO/Ti/Pt thin films, the lateral grain growth can be artificially controlled in the desired location and the vertical grain boundary perpendicular to the current flow in the channel region can be reduced to single one. As compared with the conventional sputtered ZnO BG-TFTs, the proposed locationcontrolled hydrothermal ZnO BG-TFTs (W/L = 250 µm/10 µm) demonstrated the higher field-effect mobility of 6.09 cm 2 /V·s, lower threshold voltage of 3.67 V, larger on/off current ratio above 10 6 , and superior current drivability, which can be attributed to the high-quality ZnO thin films with the reduced vertical grain boundaries in the channel region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.