rhNRG-1 improved the cardiac function of CHF patients by increasing the LVEF% and showed the capability of antiremodeling by decreasing ESV and EDV compared with pre-treatment. (A Randomized, Double-Blind, Multi-Center, Placebo Parallel controlled, Standard Therapy Based Phase II Clinical Trial to Evaluate the Efficacy and Safety of Recombinant Human Neuregulin-1 for Injection in Patients with Chronic Heart Failure; ChiCTR-TRC-00000414).
Abstract-Mobile social networks extend social networks in the cyberspace into the real world by allowing mobile users to discover and interact with existing and potential friends who happen to be in their physical vicinity. Despite their promise to enable many exciting applications, serious security and privacy concerns have hindered wide adoption of these networks. To address these concerns, in this paper we develop novel techniques and protocols to compute social proximity between two users to discover potential friends, which is an essential task for mobile social networks. We make three major contributions. First, we identify a range of potential attacks against friend discovery by analyzing real traces. Second, we develop a novel solution for secure proximity estimation, which allows users to identify potential friends by computing social proximity in a privacy-preserving manner. A distinctive feature of our solution is that it provides both privacy and verifiability, which are frequently at odds in secure multiparty computation. Third, we demonstrate the feasibility and effectiveness of our approaches using real implementation on smartphones and show it is efficient in terms of both computation time and power consumption.
Discovery of clinical pathway (CP) patterns has experienced increased attention over the years due to its importance for revealing the structure, semantics and dynamics of CPs, and to its usefulness for providing clinicians with explicit knowledge which can be directly used to guide treatment activities of individual patients. Generally, discovery of CP patterns is a challenging task as treatment behaviors in CPs often have a large variability depending on factors such as time, location and patient individual. Based on the assumption that CP patterns can be derived from clinical event logs which usually record various treatment activities in CP executions, this study proposes a novel approach to CP pattern discovery by modeling CPs using mixtures of an extension to the Latent Dirichlet Allocation family that jointly models various treatment activities and their occurring time stamps in CPs. Clinical case studies are performed to evaluate the proposed approach via real-world data sets recording typical treatment behaviors in patient careflow. The obtained results demonstrate the suitability of the proposed approach for CP pattern discovery, and indicate the promise in research efforts related to CP analysis and optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.