the final date of follow-up was February 15, 2020. All consecutive inpatients with laboratory-confirmed COVID-19 were included in this study.MAIN OUTCOMES AND MEASURES Clinical laboratory, radiological, and treatment data were collected and analyzed. Outcomes of patients with and without cardiac injury were compared. The association between cardiac injury and mortality was analyzed. RESULTS A total of 416 hospitalized patients with COVID-19 were included in the final analysis; the median age was 64 years (range, 21-95 years), and 211 (50.7%) were female. Common symptoms included fever (334 patients [80.3%]), cough (144 [34.6%]), and shortness of breath (117 [28.1%]). A total of 82 patients (19.7%) had cardiac injury, and compared with patients without cardiac injury, these patients were older (median [range] age, 74 [34-95] vs 60 [21-90] years; P < .001); had more comorbidities (eg, hypertension in 49 of 82 [59.8%] vs 78 of 334 [23.4%]; P < .001); had higher leukocyte counts (median [interquartile range (IQR)], 9400 [6900-13 800] vs 5500 [4200-7400] cells/μL) and levels of C-reactive protein (median [IQR], 10.2 [6.4-17.0] vs 3.7 [1.0-7.3] mg/dL), procalcitonin (median [IQR], 0.27 [0.10-1.22] vs 0.06 [0.03-0.10] ng/mL), creatinine kinase-myocardial band (median [IQR], 3.2 [1.8-6.2] vs 0.9 [0.6-1.3] ng/mL), myohemoglobin (median [IQR], 128 [68-305] vs 39 [27-65] μg/L), high-sensitivity troponin I (median [IQR], 0.19 [0.08-1.12] vs <0.006 [<0.006-0.009] μg/L), N-terminal pro-B-type natriuretic peptide (median [IQR], 1689 [698-3327] vs 139 [51-335] pg/mL), aspartate aminotransferase (median [IQR], 40 [27-60] vs 29 [21-40] U/L), and creatinine (median [IQR], 1.15 [0.72-1.92] vs 0.64 [0.54-0.78] mg/dL); and had a higher proportion of multiple mottling and ground-glass opacity in radiographic findings (53 of 82 patients [64.6%] vs 15 of 334 patients [4.5%]). Greater proportions of patients with cardiac injury required noninvasive mechanical ventilation (38 of 82 [46.3%] vs 13 of 334 [3.9%]; P < .001) or invasive mechanical ventilation (18 of 82 [22.0%] vs 14 of 334 [4.2%]; P < .001) than those without cardiac injury. Complications were more common in patients with cardiac injury than those without cardiac injury and included acute respiratory distress syndrome (48 of 82 [58.5%] vs 49 of 334 [14.7%]; P < .001), acute kidney injury (7 of 82 [8.5%] vs 1 of 334 [0.3%]; P < .001), electrolyte disturbances (13 of 82 [15.9%] vs 17 of 334 [5.1%]; P = .003), hypoproteinemia (11 of 82 [13.4%] vs 16 of 334 [4.8%]; P = .01), and coagulation disorders (6 of 82 [7.3%] vs 6 of 334 [1.8%]; P = .02). Patients with cardiac injury had higher mortality than those without cardiac injury (42 of 82 [51.2%] vs 15 of 334 [4.5%]; P < .001). In a Cox regression model, patients with vs those without cardiac injury were at a higher risk of death, both during the time from symptom onset (hazard ratio, 4.26 [95% CI, 1.92-9.49]) and from admission to end point (hazard ratio, 3.41 [95% CI, 1.62-7.16]).CONCLUSIONS AND RELEVANCE Cardiac injury is a commo...
Alopecia areata (AA) is a common autoimmune disease resulting from damage of the hair follicle by T cells. The immune pathways required for autoreactive T cell activation in AA are not defined limiting clinical development of rational targeted therapies1. Genome-wide association studies (GWAS)2 implicated ligands for the NKG2D receptor (product of the KLRK1 gene) in disease pathogenesis. Here, we show that cytotoxic CD8+NKG2D+ T cells are both necessary and sufficient for the induction of AA in mouse models of disease. Global transcriptional profiling of mouse and human AA skin revealed gene expression signatures indicative of cytotoxic T cell infiltration, an interferon-γ (IFN-γ) response and upregulation of several γ-chain (γc) cytokines known to promote the activation and survival of IFN-γ–producing CD8+NKG2D+ effector T cells. Therapeutically, antibody-mediated blockade of IFN-γ, interleukin-2 (IL-2) or interleukin-15 receptor β (IL-15Rβ) prevented disease development, reducing the accumulation of CD8+NKG2D+ T cells in the skin and the dermal IFN response in a mouse model of AA. Systemically administered pharmacological inhibitors of Janus kinase (JAK) family protein tyrosine kinases, downstream effectors of the IFN-γ and γc cytokine receptors, eliminated the IFN signature and prevented the development of AA, while topical administration promoted hair regrowth and reversed established disease. Notably, three patients treated with oral ruxolitinib, an inhibitor of JAK1 and JAK2, achieved near-complete hair regrowth within 5 months of treatment, suggesting the potential clinical utility of JAK inhibition in human AA.
Coronavirus disease 2019 (COVID-19) has spread globally, and medical resources become insufficient in many regions. Fast diagnosis of COVID-19, and finding high-risk patients with worse prognosis for early prevention and medical resources optimisation is important. Here, we proposed a fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis by routinely used computed tomography.We retrospectively collected 5372 patients with computed tomography images from 7 cities or provinces. Firstly, 4106 patients with computed tomography images were used to pre-train the DL system, making it learn lung features. Afterwards, 1266 patients (924 with COVID-19, and 471 had follow-up for 5+ days; 342 with other pneumonia) from 6 cities or provinces were enrolled to train and externally validate the performance of the deep learning system.In the 4 external validation sets, the deep learning system achieved good performance in identifying COVID-19 from other pneumonia (AUC=0.87 and 0.88) and viral pneumonia (AUC=0.86). Moreover, the deep learning system succeeded to stratify patients into high-risk and low-risk groups whose hospital-stay time have significant difference (p=0.013 and 0.014). Without human-assistance, the deep learning system automatically focused on abnormal areas that showed consistent characteristics with reported radiological findings.Deep learning provides a convenient tool for fast screening COVID-19 and finding potential high-risk patients, which may be helpful for medical resource optimisation and early prevention before patients show severe symptoms.
This retrospective study was designed to explore whether neutrophil to lymphocyte ratio (NLR) is a prognostic factor in patients with coronavirus disease 2019 (COVID-19). A cohort of patients with COVID-19 admitted to the Tongren Hospital of Wuhan University from 11 January 2020 to 3 March 2020 was retrospectively analyzed. Patients with hematologic malignancy were excluded. The NLR was calculated by dividing the neutrophil count by the lymphocyte count. NLR values were measured at the time of admission. The primary outcome was all-cause in-hospital mortality. A multivariate logistic analysis was performed. A total of 1004 patients with COVID-19 were included in this study. The mortality rate was 4.0% (40 cases). The median age of nonsurvivors (68 years) was significantly older than survivors (62 years). Male sex was more predominant in nonsurvival group (27; 67.5%) than in the survival group (466; 48.3%). NLR value of nonsurvival group (median: 49.06; interquartile range [IQR]: 25.71-69.70) was higher than that of survival group (median: 4.11; IQR: 2.44-8.12; P < .001). In multivariate logistic regression analysis, after adjusting for confounding factors, NLR more than 11.75 was significantly correlated with all-cause in-hospital mortality (odds ratio = 44.351; 95% Xisheng Yan and Fen Li contributed equally to this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.