The design of square‐planar Pt(II) complexes with highly efficient solid‐state near infrared (NIR) luminescence for electroluminescence is attractive but challenging. This study presents the fine‐turning of excited‐state properties and application of a series of isoquinolinyl pyrazolate Pt(II) complexes that are modulated by steric demanding substituents. It reveals that the bulky substituents do not always disfavor metallophilic Pt···Pt interactions. Instead, π–π stacking among chelates, which are fine‐tuned by the associated substituents, also exerts strong influence to the metal‐metal‐to‐ligand charge transfer (MMLCT) transition character. Theoretical calculations indicate that Pt···Pt contacts become more relevant in the trimers rather than the dimers, especially in their T1 states, associated with a change from mixed 3LC/3MLCT transition in the monomer/dimer to mixed 3LC/3MMLCT transition character in the trimer. Electroluminescence devices affording intense deep‐red/NIR emission (near 670 nm) with unprecedentedly high external quantum efficiency over 30% are demonstrated. This work provides deep insights into formation MMLCT transition of square‐planar Pt(II) complexes and efficient molecular design for deep‐red/NIR electroluminescence.
Near‐infrared organic light‐emitting diodes (NIR OLEDs) enable many unique applications ranging from night‐vision displays and photodynamic therapies. However, the development of efficient NIR OLEDs with a low efficiency roll‐off is still challenging. Here, a series of new heteroleptic Pt(II) complexes (1–4) flanked by both pyridyl pyrimidinate and functional azolate chelates are synthesized. The reduced ππ* energy gap of the pyridyl pyrimidinate chelate, and strong intermolecular interaction and high crystallinity in vacuum‐deposited thin films engender strong intermolecular charge transfer transition including metal–metal‐to‐ligand charge transfer; thereby, exhibiting efficient photoluminescence within 776–832 nm and short radiative lifetimes of 0.52–0.79 µs. Consequently, nondoped NIR‐emitting OLEDs based on these Pt(II) complexes are fabricated, to which Pt(II) complexes 2 and 4 give record high maximum external quantum efficiency of 10.61% at 794 nm and 9.58% at 803 nm, respectively. Moreover, low efficiency roll‐off is also observed, among which the device efficiencies of 2 and 4 are at least four times higher than that of the best NIR‐emitting OLEDs recorded at current density of 100 mA cm−2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.