BackgroundIron plays a pivotal role in the pathogenesis of Trichomonas vaginalis, the causative agent of highly prevalent human trichomoniasis. T. vaginalis resides in the vaginal region, where the iron concentration is constantly changing. Hence, T. vaginalis must adapt to variations in iron availability to establish and maintain an infection. The free radical signaling molecules reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been proven to participate in iron deficiency in eukaryotes. However, little is known about the roles of these molecules in iron-deficient T. vaginalis.MethodsT. vaginalis cultured in iron-rich and -deficient conditions were collected for all experiments in this study. Next generation RNA sequencing was conducted to investigate the impact of iron on transcriptome of T. vaginalis. The cell viabilities were monitored after the trophozoites treated with the inhibitors of nitric oxide (NO) synthase (L-NG-monomethyl arginine, L-NMMA) and proteasome (MG132). Hydrogenosomal membrane potential was measured using JC-1 staining.ResultsWe demonstrated that NO rather than ROS accumulates in iron-deficient T. vaginalis. The level of NO was blocked by MG132 and L-NMMA, indicating that NO production is through a proteasome and arginine dependent pathway. We found that the inhibition of proteasome activity shortened the survival of iron-deficient cells compared with untreated iron-deficient cells. Surprisingly, the addition of arginine restored both NO level and the survival of proteasome-inhibited cells, suggesting that proteasome-derived NO is crucial for cell survival under iron-limited conditions. Additionally, NO maintains the hydrogenosomal membrane potential, a determinant for cell survival, emphasizing the cytoprotective effect of NO on iron-deficient T. vaginalis. Collectively, we determined that NO produced by the proteasome prolonged the survival of iron-deficient T. vaginalis via maintenance of the hydrogenosomal functions.ConclusionThe findings in this study provide a novel role of NO in adaptation to iron-deficient stress in T. vaginalis and shed light on a potential therapeutic strategy for trichomoniasis.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-015-1000-5) contains supplementary material, which is available to authorized users.
There are 48 members of the GP63 protease family in Trichomonas vaginalis according to our annotations; 37 of them are predicted to be transmembrane proteins. Because the GP63 protease family is the largest surface protease family and the second largest surface protein family, they are most likely to be involved in the interactions between T. vaginalis and the host cell surfaces, or otherwise participate in infection. We performed a preliminary study on the functions of GP63 in T. vaginalis (TvGP63). We demonstrated the cell surface localization of one highly expressed member of TvGP63 using indirect immunofluorescence assays in both isolate T016 and isolate 30236. The specific inhibitor of TvGP63 protease, 1,10-phenanthroline, was found to significantly inhibit the destruction of HeLa cells, whereas another chelator, EDTA, could not. Further tests showed that 1,10-phenanthroline did not inhibit the adherence of T. vaginalis cells to HeLa cells. The results presented in here suggest that GP63 protease plays a vital role in T. vaginalis infection process, but may not be related to the adherence of parasitic cells to their hosts.
The three most common sexually transmitted infections (STIs) are Chlamydia trachomatis (CT), Neisseria gonorrhoeae (GC) and Trichomonas vaginalis (TV). The prevalence of these STIs in Taiwan remains largely unknown and the risk of STI acquisition affected by the vaginal microbiota is also elusive. In this study, a total of 327 vaginal swabs collected from women with vaginitis were analyzed to determine the presence of STIs and the associated microorganisms by using the BD Max CT/GC/TV molecular assay, microbial cultures, and 16S rRNA sequencing. The prevalence of CT, TV, and GC was 10.8%, 2.2% and 0.6%, respectively. A culture-dependent method identified that Escherichia coli and Streptococcus agalactiae (GBS) were more likely to be associated with CT and TV infections. In CT-positive patients, the vaginal microbiota was dominated by L. iners, and the relative abundance of Gardnerella vaginalis (12.46%) was also higher than that in TV-positive patients and the non-STIs group. However, Lactobacillus spp. was significantly lower in TV-positive patients, while GBS (10.11%), Prevotella bivia (6.19%), Sneathia sanguinegens (12.75%), and Gemella asaccharolytica (5.31%) were significantly enriched. Using an in vitro co-culture assay, we demonstrated that the growth of L. iners was suppressed in the initial interaction with TV, but it may adapt and survive after longer exposure to TV. Additionally, it is noteworthy that TV was able to promote GBS growth. Our study highlights the vaginal microbiota composition associated with the common STIs and the crosstalk between TV and the associated bacteria, paving the way for future development of health interventions targeting the specific vaginal bacterial taxa to reduce the risk of common STIs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.