Significant advances have been made in the development of plasmonic devices in the past decade. Plasmonic nanolasers, which display interesting properties, have come to play an important role in biomedicine, chemical sensors, information technology, and optical integrated circuits. However, nanoscale plasmonic devices, particularly those operating in the ultraviolet regime, are extremely sensitive to the metal and interface quality. Thus, these factors have a significant bearing on the development of ultraviolet plasmonic devices. Here, by addressing these material-related issues, we demonstrate a low-threshold, high-characteristic-temperature metal-oxide-semiconductor ZnO nanolaser that operates at room temperature. The template for the ZnO nanowires consists of a flat single-crystalline Al film grown by molecular beam epitaxy and an ultrasmooth Al2O3 spacer layer synthesized by atomic layer deposition. By effectively reducing the surface plasmon scattering and metal intrinsic absorption losses, the high-quality metal film and the sharp interfaces formed between the layers boost the device performance. This work should pave the way for the use of ultraviolet plasmonic nanolasers and related devices in a wider range of applications.
Y2O3 and Al2O3 were deposited onto GaSb(100) surfaces by molecular beam epitaxy and atomic layer deposition, respectively. Angle-resolved X-ray photoelectron spectroscopy and electrical measurements were used to probe the two oxide/semiconductor interfaces, which yielded very different behaviors. Highly surface-sensitive scans showed traces of SbOx and AsOx at the Y2O3 surface, which were removed during subsquent ALD Al2O3. The deposition of Y2O3 led to true inversion as indicated in capacitance–voltage (C–V) characteristics, small hysteresis and frequency dispersion, and low gate leakage. In contrast, for Al2O3/GaSb, the GaSb remained virtually intact, with Al2O3 bonding to the residual As, leading to poor C–V characteristics.
The electrical, structural, and chemical properties of HfO2/Al2O3/GaSb metal-oxide-semiconductor capacitors (MOSCAPs) fabricated on Sb-rich (2 × 5) and Sb-stabilized (1 × 3) surfaces by atomic layer deposition are characterized. A combination of the transmission electron microscopic, x-ray photoelectron spectroscopic, and atomic force microscopic observations shows that the Sb-rich surface, with its excessive Sb atoms and clusters, leads to island deposition of the dielectric materials and results in the high leakage current of the MOSCAPs. For the MOSCAPs fabricated on the Sb-stabilized (1 × 3) surface, a density of interface traps as low as 8.03 × 1011 cm−2 eV−1 near the valence band and 1.86 × 1012 cm−2 eV−1 at the midgap is obtained as estimated by the conductance method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.